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Chapter - 4 

 

Motion in Two Dimensions 
 

 

 
 

 

 
 

Rectilinear motion is only a special case - the 
simplest one indeed. But the bodies do not  
always move in straight lines. A roller  
coaster employs an elevated railroad track with tight 
turns, steep slopes and sometimes inversions. 
 

 
4.1. Motion in a Plane 
 

Before going into the specifics of motion in a plane we 

reproduce two paragraphs from Chapter - 3 to begin 
with. 
 

Let us consider an example from everyday life. Make a mark on the 

rim of your bicycle and focus on the mark when you ride it. What is 

the trajectory of the mark as seen by you? Is it the rim circumference 

itself? What is the trajectory of the mark relative to a person standing 

on the ground? Figure 3.2 shows the trajectory of a point (P) on the 

rim of a rolling wheel relative to the ground.  

 

P 

P 

 

Fig. 3.2 

To describe the motion of a body, we must know how its various 

points move. Many a time we are interested only in the change of the 

position of the body as a whole. Consequently, in some cases the 

description of the motion of a body is reduced to the description of 

the motion of a point. 

Various types of motion of a point differ first of all in the shape of the 

paths. If the path is a straight line, the motion of the point is referred 

to as rectilinear (motion in a straight line or motion in one 

dimension). If the path is a curve, the motion is said to be curvilinear 

(motion in two or three dimensions). For instance, the centre of the  

wheel rolling on a horizontal road in Fig. 3.2 moves in a straight line, 

while point P is in a curvilinear motion.  
 

Point P in the above example moves in a plane, so does 

a piece of stone thrown obliquely in air, the swinging 

bob of a simple pendulum and a girl in a merry-go-
round. Can you give a few more examples? In this 

chapter we shall study the motion of bodies in a two-

dimensional plane.  
 

4.2. Displacement, Velocity and Acceleration 
 

The quantities like displacement, velocity, and 

acceleration were introduced in Chapter - 3 for one-

dimensional motion. We must generalize them to two 
dimensions emphasizing their vector nature. 

Let us consider a simple example. As depicted in  

Fig. 4.1, a girl strolling on a ground moves from point 

A  to point B  along a path (Path 1) of length 60 m. 
After some time she finds herself at point A  again. She 

goes to point B  for the second time, now along a 

different path (Path 2) of length 40 m. After a while the 

girl again walks from point A to point B, covering a  
90-m distance along Path 3. 

A B 

40 m 

Path 1 60 m 

Path 2 

Path 3 90 m  

Fig. 4.1 

In the three laps of motion described above the girl 

moves from point A  to point B  - along three different 
paths covering three different distances. 
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What is common to these three laps of motion of the 

girl? The staring point A, from where she starts moving 
and point B, where she halts. We can say that the initial 

position of her motion is point A and the final position 

is B. Her position changes from point A to point B, in 

each lap. 
It turns out that this change in position is an extremely 

useful quantity in describing the motion of bodies. We 

call this quantity displacement. Thus displacement is 

change in position of a moving body. 
 

We list here a few incorrect definitions of displacement 
we have been hearing from students over the years. 
*Displacement is the shortest distance between two points. 
*Displacement is the shortest distance between the initial and 
final positions of a moving body. 
*Displacement is the straight line connecting the initial and 
final positions of a moving body. 

These statements do not qualify to be definition of a 
physical quantity, the clauses in them do not signify 

something essentially meaningful. These clauses 
assume specific meanings in certain situations. Students 

are required to give these statements a thought and 

figure out why they cannot be definition of 

displacement. 
But as we understand, science is not about coining 

words and definitions. It is about experiments, 

measurements, formulations, interpretations, 

applications and predicting possible outcomes. Here 
naturally arise some important questions: How to 
represent displacement? How to measure it? How to use 

it in describing the motion of a body? How to relate it 
to other kinematical quantities? 

In the example of the strolling girl described above 

(Fig. 4.1), her position changes from point A  to point 

B (see the dotted line). The change in the position can 
be represented by an arrow placed between points A  

and B, the tail of the arrow at point A, representing the 

initial position, and its head at point ,B  the final 

position. 

The length of the arrow tells by how much did the 

position change, that is, the value (more formally called 
the magnitude) of the displacement and the tail-head 

orientation indicates the direction in which this change 

occurred. Displacement has a direction also - it is in the 

direction in which the head of the arrow points. 
Hence, the displacement of a moving body must tell 

you two things: by how much did the position change 

and in which direction did the change occur. Only the 
value of displacement or only its direction is not 
enough. 

Before we proceed further, we must understand another 

characteristics of this quantity. Suppose the girl strolling 
on the ground goes from point A  to point B  and then 

from point B  to point ,C  as depicted in Fig. 4.2. 

What is the total distance the girl traveled? It is the sum 

of the lengths of the paths 1 and 2: total distance is 

60 m 50 m 110 m.d     

 

A 

B 

25 m 

Path 1 60 m 

Path 2 

50 m 

30 m 

C 

 

Fig. 4.2 

What is the net change in the position of the girl? How 
to represent it? It can be represented by an arrow drawn 

from her initial position A  to the final position .C  Is 

the length of this arrow equal to the sum of the lengths 
of the arrows AB  and ,BC  30 m 25 m 55 m?   

Most unlikely. It follows that displacements cannot be 

added numerically or algebraically. They belong to 
some other class with its own set of rules for 

manipulation. 

Let us represent the three displacements, from A  to B , 

from B to C and from A to C as AB


, BC


 and AC


 

respectively. Also, as an example, assume that the 

length of the line segment AC  is  15 m. Then,  

 
30 m 25 m 15 m

.AB BC AC 
  

 

Here emerges an entirely different way of addition: a 
displacement in one direction when added to a 

displacement in another direction gives a displacement 

in a third direction whose magnitude may be different 

from the sum of the magnitudes of the displacements 
added. Look at the arrangement of the arrows along the 

sides of the ABC  in the figure carefully. This law of 

addition of physical quantities, called the triangle law 
or parallelogram law (as explained in Chapter 2), which 

is followed by displacement and many other physical 

quantities is the vector law of addition; and the 

quantities that follow this law are christened vectors. 
We shall now learn how to represent and work with 

displacements in a systematic way. In our example  

(Fig. 4.1), the position of the girl changed from point A 
to B. It makes sense to represent her position, and also 
the change in position in a more specific, mathematical 

way. A convenient way to do it is to draw a position 

vector from a reference point. 

In a two dimensional plane the position vector r


 of a 

point whose coordinates are (x, y) is represented as 

ˆ ˆ,r xi yj 


 as shown in Fig. 4.3. 

The Cartesian coordinates x  and y  are called the 

scalar components of the position vector ,r


 and î  and 
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ĵ  are unit vectors in the direction of x- and y- axes 

respectively. 

 

O 
x 

y 

 

(x, y) 

r


 

 

Fig. 4.3 

We can also represent the position of a point by r  (length 

of the line drawn from origin to the point) and  (angle the 
line makes, say, with x- axis in anticlockwise sense). The 
two descriptions of the position vector are equivalent in 

the sense we can pass back and forth between them. If we 

are given ( , )x y , we can find r  and  from  

 2 2r x y   and tan ,
y

x
   

and in case ( , )r   are known, we can obtain x  and y  

from 

 cos , sin .x r y r     

If a point moves from position A whose position vector 

is 1r


 to position B with position vector 2r


, as shown in 

Fig. 4.4, the displacement, that is, the change in 
position, is 

 2 1
ˆ ˆ.r r r x i y j        

 

 

x 

y 

O 

1r


 
2r


 

B r


A 

Path 

 

Fig. 4.4 

The following should help you to draw the direction of 

r


 correctly: r


 is the vector that must be added to 

the initial position vector 1r


 to give the final position 

vector 2r


, that is,  1 2.r r r  
  

 

Now we shall correlate the displacement of a motion to 
the corresponding time interval which leads to the 

concept of velocity. As in Chapter - 3, the average 

velocity is defined as the ratio of the displacement to 

the time interval over which the displacement occurred. 

 2 1

2 1

.av

r r r
v

t t t

 
 

 

  
 …(4.1) 

It can be readily seen that the magnitude of the average 

velocity is obtained by dividing the magnitude of 
displacement by the time interval. What about its 

direction? Which direction should be ascribed to 

average velocity? The direction of average velocity avv


 

is that of r


, which is directed along a chord across the 

path shown in the above figure. 
The concept of average velocity has limited application 

as it lacks in details of motion. Many times we are 

interested in velocity of a particle when it is at a certain 

position or at an instant of time. This necessitates 
developing the concept of instantaneous velocity. While 

calculating average velocity the shorter the intervals we 
choose, the smaller is the difference between the 

corresponding small segment of the path and its chord. 
For a sufficiently small path length, the chord will be 

practically indistinguishable from the tangent drawn at 

any point of this segment of the path. The direction of 
instantaneous velocity is the direction of the tangent at 

the point of the path where the moving point is at a 

given instant of time. 

The instantaneous velocity is 

 
0

lim
t

r
v

t 







  

which in the notation of calculus is written as  

  .
d r

v
dt




 …(4.2) 

We can express instantaneous velocity in terms of its 

components as 

 ˆ ˆ,x yv v i v j 


 

where ,x

dx
v

dt
  and .y

dy
v

dt
  The direction of v


 is 

along the tangent to the path, see Fig. 4.5. 

 

x 

y 

t 

(t + t) 

r


A 

B 

O  

Fig. 4.5 

An important point to be noted is that the instantaneous 

velocity v


 is directed along the tangent to the path, but 

its magnitude is not the slope of that line. Why? Notice 
that the diagram is not a position-time graph. 

Consequently, the magnitude of ,v


 the instantaneous 

speed, is not given by the slope of the tangent. 

For a point moving in one dimension, a change in velocity 

can be effected only be changing its value; it can be 

increased or decreased. When the velocity of the point 
reverses its sign, the direction of motion of the point is 

reversed. In case of motion in two dimensions, as well as 

in three-dimensional space, there arise many possibilities. 
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For a point in planar motion, its velocity may change 

only in magnitude or only in direction or in most of the 
cases, in both magnitude and direction. 

Thus, in a curvilinear motion the velocity continuously 

changes, which means that the point moves with an 

acceleration. To determine this acceleration (its 
magnitude and direction), we have to find the change of 

velocity as a vector, i.e., we have to determine the 

change of the magnitude of velocity and the direction of 

change in velocity. 

Suppose that a point has a velocity 1v


 at an instant of 

time t1 and 2v


 after a time interval t, that is to say at 

instant 2.t  The change in velocity is obtained by 

subtracting vector 1v


 from 2v


. The average 

acceleration is the ratio of the velocity change to the 

interval of time t over which this change occurs. 

 2 1

2 1

.av

v v v
a

t t t

 
 

 

  
 …(4.3) 

The direction of average acceleration 


ava  coincides 

with the direction of the change in velocity vector .v


 

Does the direction of 

v  coincide with the direction of 

2


v ? Can it? What if the point starts from rest? 

The direction of acceleration of a point moving in a 

plane does not coincide, in general, with the direction 
of velocity. In order to find the direction of 

acceleration, we compare the directions of the velocities 
at two close points on the path. Since the velocities are 

directed along the tangents to the paths, the direction of 

acceleration can be determined from the shape of the 

path. Since the change 2 1v v
 

 of the velocities at two 

close points is always directed towards the bending of 
the path, it means that acceleration is always directed 
inside of the curved path, see Fig. 4.6. 

 
v1 

v


 
2v


1v


 

Fig. 4.6 

Since average accelerations of a motion computed over 

different time intervals are not necessarily same, it 

warrants to develop the concept of instantaneous 

acceleration: acceleration at a certain point of the path 
or acceleration at a certain instant of time. 

 By choosing a sufficiently small t, we arrive at the 
concept of instantaneous acceleration. The 
instantaneous acceleration is the rate of change of 

velocity relative to time: 

 ˆ ˆ
x y

d v
a a i a j

dt
  


 …(4.4) 

where ,x
x

dv
a

dt
  and .

y

y

dv
a

dt
  

In passing it is worth noting that it is far more 

convenient to calculate the two components xa  and ya  

with the help of calculus or otherwise than calculating 

vector .a


 

Can we determine acceleration a


 directly from the path 

of the point? No. We need to know how each 

component of the velocity varies as a function of space 

and time. Figure 4.7 shows possible directions for the 

acceleration of a point that travels along a curved path 
with varying speed. 

 

x 

y 

a 

Path of point 
a 

a 

 

Fig. 4.7 

 Example 1. The position vector r


 of a particle is 

given by the following equation 3 2ˆ ˆ( )r t t i t j  


, 

where 310
ms

3

   and  2
5 ms .

   At t = 1 s, what 

are the velocity and acceleration of the particle? 

The derivative of the position vector function gives the 

velocity vector and the derivative of the velocity vector 
function gives the acceleration, (Eqs. (4.2) and (4.4)). 

 2 ˆ ˆ( ) 3 2v t t i t j   


 

 ˆ ˆ( ) 6 2a t t i j   


. 

Substituting the given values of  and , and 1 st   

into the expressions for the position vector, velocity and 
acceleration, we obtain 

 
10 ˆ ˆ5 m
3

r i j 


 

 ˆ ˆ10 10 m/sv i j 
 

 2ˆ ˆ20 10 m/s .a i j 


 
 

 At 1 s,t   what is the angle between r


 and v


? 

Between r


 and a


? Between v


 and ?a


 

We can use the dot product of two vectors (Eq. 2.4, 
Chapter 2) to compute these angles. But in this problem 

you know the x- and y- components of the position 

velocity and acceleration vectors. You can find the 
required angles straightaway. All you need to do is to 

draw these vectors on x-y plane (Fig. 4.8), and use 

elementary trigonometry. 
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O 

5m 

10 m/s 20 m/s2 

10 m/s2 10 m/s 

x 

y 
v


 a

 

r


 

10
m

3

 
 

 Fig. 4.8  

 

4.3. Motion in a Plane with Constant 

Acceleration 
 

Let us consider the case of two dimensional motion of a 
point in which the acceleration does not vary either in 

magnitude or in direction. In that case the components 

of acceleration a


 in any Cartesian coordinate system 

will not vary, that is, ax = constant and ay = constant. 

Under this condition the motion of the point can be 

described as the sum of two component motions 
occurring simultaneously with constant acceleration 

along each of the two axes. This simplifies the analysis 

amazingly. The point will move, in general, along a 

curved path in the plane. Will the point move on a 
curved path even if one component of the acceleration, 

say ax, is zero? Can one component of the velocity, say 

vx, have a constant, non-zero value? What about the 
motion of a cricket ball which follows a curved path in 

a vertical plane when the effect of air resistance is 

neglected? 

We can obtain the general equations for two 
dimensional motions with constant acceleration simply 

by setting 

 ax = constant and ay = constant. 

The equations for constant acceleration (Eqs. 3.7, 
through 3.10, Chapter 3) then apply separately and 

independently to both the x- and y- components of the 

displacement vector ,S


 the velocity vector v


, and the 

acceleration vector .a


 From this idea we generate two 

sets of equations given below. 

(i) Equations for motion in the direction of x- axis: 

 
x x x

v u a t   …(4.5a) 

 21

2x x x
S u t a t   …(4.5b) 

 2

0

1

2x x
x x u t a t    …(4.5c) 

 2 2
2 .

x x x x
v u a S   …(4.5d) 

(ii) Equations for motion in the direction of y- axis: 

 
y y y

v u a t   …(4.6a) 

 21

2y y y
S u t a t   …(4.6b) 

 2

0

1

2y y
y y u t a t    …(4.6c) 

 
2 2

2 .
y y y y

v u a S   …(4.6d) 

Now the most important question is how the two sets of 
equations are related? The answer to this question lies 
in that the time parameter t is the same for each, since t 

represents the time at which the point occupied a 

position defined by the co-ordinates x and y. 

The equations of motion in a plane may also be 
expressed in vector form. For example, velocity of the 

point at a variable time t  can be written in terms of its 

components as 

 ˆ ˆ
x yv v i v j 


 

 ˆ ˆ( ) ( )x x y yu a t i u a t j     

 ˆ ˆ ˆ ˆ( ) ( ) .x y x yu i u j a i a j t     

The first quantity in parentheses is the initial velocity 

vector u


 and the second is the (constant) acceleration 

vector a


 multiplied by t. Thus, the vector relation 

 v u at 
  

 …(4.7) 

is equivalent to the two scalar relations. This relation 

shows that the velocity v


 at time t is the sum of the 

initial velocity u


 and the (vector) change in velocity, 

,at


 during the time interval t under the constant 

acceleration .a


 Similarly, the vector equation for the 

displacement is 

 21
.

2
S ut at 
  

 …(4.8) 

One can easily interpret this equation by ascribing 

meaning to the two terms that appear on its right hand 

side. 
We shall now apply the concepts discussed above to 

some common motions, viz. projectile motion, circular 

motion, relative motions in two dimensions, and so on. 
 

4.4. Projectile Motion 
The fact that the laws of natural sciences are non-intuitive in nature is 

often reflected in our everyday life. For example, for the motion of a 

ball thrown in air, many of us believe that the force used to throw the 

ball up somehow stays with it. The ‘force of the hand’ is supposed to 

be gradually overcome by the force of gravity, which ultimately 

causes the ball to fall. It is not surprising that as late as the sixteenth 

century it was believed that when a shell was fired, it was given an 

‘impressed force’ that produced ‘violent’ motion in a straight line, 

thereafter followed a region of mixed motion (‘violent’ plus ‘natural’ 

motion vertically down) because of air resistance, and finally, the 

‘natural’ motion vertically down prevailed, see Fig. 4.9. Initially, 

Galileo also believed that the motion of a projectile was governed by 

an ‘impressed force’ that gradually diminished. It was only after he 

had developed his principle of inertia that he could tackle the problem 

of projectile motion properly. 

Galileo had arrived at the crucial insight that a projectile near the 

surface of the earth has two independent motions: A horizontal 

motion at constant speed and a vertical motion subject to the 

acceleration due to gravity. 
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Violent 

Mixed 

Natural 

 

Fig. 4.9 

 

This very common form of motion is surprisingly 

simple to analyze if two facts are taken into 

consideration: (i) The acceleration due to gravity g is 

constant over the range of motion and is directed 
downward. (ii) The effect of air resistance is negligible, 
which makes us to assume that there is no acceleration 

in the horizontal direction.  
If we choose our reference frame such that the  

y- direction is vertical and positive upward, then ay = –g 

(as in one-dimensional free fall) and ax = 0 (since air 

resistance is neglected). Suppose that at t = 0 the 
projectile leaves the origin (0, 0) with a velocity v0, as 

in Fig. 4.10. If the velocity vector makes an angle  
(angle of projection) with the horizontal, the initial x- 
and y- components of velocity are given by 

 0 0 cosxv v   and 0 0 sin .yv v   

Substituting these expressions into Eqs. 4.5 and 4.6 

with ax = 0 and ya g   gives the velocity 

components and coordinates for the projectile at any 

time t. 

 

y 

x 

O 

v0x 

v0x 

–v0y 

v0x 

v0y 

v0 

vy 

g 

 

 

v0x 

v0 

 

vy = 0 

 

Fig. 4.10 

 0 cosxv v   …(4.9) 

 0 sinyv v gt    …(4.10) 

 0( cos )x v t   …(4.11) 

 2
0

1
( sin ) .

2
y v t gt    …(4.12) 

By a look at these equations certain observations can be  

made immediately. We see that xv  remains constant in 

time and is equal to the initial x- component of velocity, 
since there is no horizontal component of acceleration. 

Also, for the motion in y- direction, we note that 

expressions for yv  and y are identical to that for yv  and 

y  for a particle thrown vertically upward and moving 

with constant acceleration g, as discussed in  

Section 3.5.2, Chapter 3.  
If we solve for t in Eq. 4.11 and substitute the 

expression for t into Eq. 4.12, we find the equation of 
the trajectory: 

 2

2 2
0

(tan ) ,
2 cos

g
y x x

v

 
      

 …(4.13) 

which is valid for the angle  in the range 0
2


   . 

Why? This equation is of the form 2
,y ax bx   which 

is the equation of a parabola that passes through the 
origin. You will learn about this function when you 
study quadratic equations in algebra or parabola in 

coordinate geometry.  

It is extremely useful to investigate the motion of the 

projectile in a little detail and compute a few variables, 

like its velocity v


 as a function of time, the angle its 

velocity vector makes with the horizontal, its speed, its 

position vector and distance from the origin, the angle 
between its velocity vector and acceleration vector at 

certain instant ,t  and so on.  

We can obtain the velocity v


 as a function of time for 

the projectile by noting that Eqs. 4.9 and 4.10 give the 

x- and y- components of velocity at any instant: 

 0 0
ˆ ˆ( cos ) ( sin ) .v v i v gt j    


 

Also, since the velocity vector is tangent to the path at 

any instant, as shown in Fig. 4.10, the angle  that v


 

makes with the horizontal can be obtained from xv  and 

yv  through the expression 

 tan .
y

x

v

v
   

Further, by definition, the instantaneous speed v is 

equal to the magnitude of the instantaneous velocity ,v


 

therefore, 

 2 2 .x yv v v   

The expression for the position vector as a function of 

time t for the projectile follows directly from Eq. 4.8, 

with  
a g  we have 

 2
0

1
.

2
r v t gt 
  

 

This expression is plotted in Fig. 4.11. It is interesting 
to note that the motion can be considered as the 
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superposition of the term 0v t


, which is the 

displacement if no acceleration were present, and the 

term 21

2
gt


, which arises from the acceleration due to 

gravity. In other words, if there were no gravitational 

acceleration the projectile would continue to move 

along a straight path in the direction of 0.v


 

x 

y 

0v t


O 

r


 

(x, y) 

21

2
gt


 

 

Fig. 4.11 
 

We conclude that projectile motion is the superposition 

of two motions: (1) the motion of a freely falling body 

in the vertical direction with constant acceleration and 
(2) motion in the horizontal direction with constant 
velocity. 
 

 Example 2. A hunter wishes to shoot a koala 
hanging from a branch. The hunter aims right at the 

koala, not realizing that the bullet will follow a 

parabolic path and thus will fall below the koala. The 
koala, however, seeing the firing, lets go of the branch 

and drops out of the tree, expecting to avoid a hit. Show 

that the koala will be hit regardless of the initial 
velocity of the bullet so long as it is large enough to 

travel the horizontal distance to the tree before hitting 

the ground. 

Let the horizontal distance to the tree be x and the 
original height of the koala be H, as shown in Fig. 4.12. 

Then the gun is aimed at an angle given by tan  = H/x. 
If there were no gravity, the bullet would reach the 

height H (with vertical velocity 
0 y

v ) in the time t taken 

for it to travel the horizontal distance x, that is, 

 

0 yv  

0xv  

0 y
H v t  

x 

v0 y 

21

2
gt  

 

Fig. 4.12 

 0 yv t H  in time 
0

.
x

x
t

v
  

However, because of gravity, the bullet has an  

acceleration vertically down. In time 
0

/
x

t x v , the 

bullet reaches a height given by 

 2 2

0

1 1
.

2 2
y

y v t gt H gt     

This is lower than H by 21

2
gt , which is just the amount 

the koala falls in this time. For large 
0v  the koala is hit 

very near its original height, and for small 
0v  it is hit 

just before it reaches the ground.  
 

4.4.1. The Maximum Height and 

Horizontal Range of a Projectile 
 

There are two points that are of special interest: the 

highest point of the trajectory with Cartesian 
coordinates (R/2, H) and the point with coordinates  

(R, 0) where the projectile comes in level with the 
launch point, see Fig. 4.13. The distance H is called the 

maximum height of the projectile and R its horizontal 
range. 

y 

v0 

t = 0 

 

t = T 

R 

h 

t' 

, , 0
2

y

R
H v

   
 

 

x 

 

Fig. 4.13 
 

We can determine the maximum height H reached by 

the projectile by noting that 0yv   at the peak.  

Therefore, Eq. 4.10 can be used to determine the time t  
it takes to reach the peak: 

 0 sin
.

v
t

g

    

Substituting this expression for t  into Eq. 4.12 gives 

the maximum height H in terms of 0v  and : 

 

2

0 0
0

sin sin1
sin

2

v v
H v g

g g

    
     

   
 

or  
2 2
0 sin

.
2




v
H

g
 …(4.14) 

Alternatively, the maximum height H can be obtained 

from Eq. 4.6d directly, 

 2 2
00 ( sin ) 2 ,v gH    

whence 
2 2
0 sin

.
2

v
H

g


  

The range R  is the horizontal distance traveled in  
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twice the time the particle takes to reach the peak, that 

is, in time 2 .t  Since the acceleration in the vertical 

direction is constant, the time of decent of the projectile 

must equal the time of ascent, therefore, the total time 

of flight is equal to  

 02 sin
2 .

v
T t

g


   …(4.15) 

This can also be seen that by setting y = 0 in Eq. 4.12 

and solving the quadratic equation for t, one solution is 

0,t   and the other solution is 02 sin
 

v
t T

g
. Using 

Eq. 4.11 and noting that x R  at t T , we find that 

 0
0

2 sin
cos

v
R v

g

 
  

 

2
02 sin cosv

g

 
  

which is  

 
2
0 sin 2

.
v

R
g


  …(4.16) 

It is important to note that Eq. 4.16 is valid only when 
the projectile returns to the initial vertical level, that is, 

0.y   

Keep in mind that Eqs. 4.14 and 4.16 are useful only for 

calculating H and R if v0 and  are known and only for a 
symmetric path, as shown in Fig. 4.10. The general 
expressions given by Eqs. 4.9 through 4.12 are the most 

important results, since they give the coordinates and 

velocity components of the projectile at any time t. 

You should also note that the maximum value of R 

from Eq. 4.16 is 2
max 0 / .R v g  This result follows from 

the fact that the maximum value of sin 2  is unity, 

which occurs when 2 = 90°. Therefore, we see that the 
range R is a maximum when the angle of projection  

 = 45, if resistance of air is neglected. 

Figure 4.14 illustrates various trajectories for a 
projectile of a given initial speed.  

y (m) 
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Fig. 4.14 

As you can see, the range is maximum for  = 45°. In  

addition, for any  other than 45, a point with 
coordinates (R, 0) can be reached with two 

complementary values of , such as 75 and 15°. Of 
course, the maximum height and time of flight will be 

different for these two values of . Figure 4.14 
illustrates, by way of example, that for two 

complementary angles, 75 and 15, and 60 and 30, 
the range of projectile is same. We used

2
9.8m/sg   to 

generate the trajectories of the projectile launched at 

different angles.  

To emphasize this fact let us consider another example. 

If 0 20 m/sv   and 30 m,R   then  

 
2

2 2
0

(30 m) (9.8 m/s )
sin 2 0.735

(20 m/s)

Rg

v


    . 

Thus 23.7    or 66.3 . Notice that 45 ,     

where 21.3 ,    see Fig. 4.15.  

O 

 

x 
45 
 

y 

 

Fig. 4.15 

 Find the maximum height reached and horizontal 

range if a projectile is launched at 50m/s  at an angle  

(i) 15, (ii) 30, (iii) 45, (iv) 60 and (v) 75 with the 

horizontal. Take 2
9.8m/s .g   

 

An important practical aspect of the motion of the projectiles must be 
understood. Computations based on the above equations are accurate 

only when air resistance can be neglected and the acceleration due to 

gravity is constant both in magnitude and in direction. 

The predictions of these equations are valid only when the projectile 

is launched at a speed much less than its terminal speed (refer to 

Chapter 16). They do not really apply even to such commonplace 

projectiles as cricket and golf balls, let alone arrows, bullets, or 

ballistic missiles.  They may be applied to slower projectiles, such as 

a shot-put. Nonetheless, in other cases they do provide a good first 

approximation to a complete, and usually far more complex solution. 
 

The student should not feel compelled to memorize the 
expressions for time of flight, maximum height, and 

range or the equation of trajectory. These expressions 

are useful only in answering straightforward questions. 
The important thing is to follow the line of reasoning 
and steps used to obtain these results. The wisest way to 

handle problems on projectile motion is NOT TO USE 

THESE FORMULAE, EVER. You are not supposed to 
even remember them. You can anyway derive any of 

them in 8 to 10 seconds if need be. 

It is far more fruitful to solve problems on projectile 

from the basics: draw a diagram, resolve the initial 
velocity into horizontal and vertical components, and 
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then analyze the two components of motion separately 

and independently, using the familiar equations 

, v u at  21
,

2
 S ut at  2 2

2v u aS   for motion 

with constant acceleration. This makes the solution 

unimaginably simple. 
 

 Example 3. A projectile is launched at moment 0t   

from point O on the ground with a velocity 20 m/s at an 

angle of 53° with the horizontal. Point O  is origin of a 

coordinate system whose x- axis is horizontal and y- axis 
is directed vertically upward, see Fig. 4.16. Take the unit 

vectors along the x- and y- axes as î and ĵ  respectively. 

Take the acceleration due to gravity as 10 m/s
2
 downward, 

that is, opposite to positive y- axis. Take sin 53° = 0.8,  
cos 53° = 0.6. 

y 

20 m/s 

O 

53 

B 

x 

A 

 

Fig. 4.16 
 

(a) What is the total time of flight of the projectile? 
You can calculate the time of flight directly from 

Formula 4.15 as 

 0

2

2 sin 2 20 m/s sin 53
3.2 s.

10 m/s

v
T

g

  
  


 

But as instructed above, you should follow the line of 

reasoning that was employed in deriving this and other 
formulas of projectile motion to solve even simple 

straightforward problems. You will understand the 

benefits of this habit when, after solving a variety of 

problems, you attain maturity and realize how 
beautifully this approach works for most complex 

problems. 

The x- and y- components of the initial velocity 

 of the projectile are (20 m/s)cos53 12 m/s  and 

(20 m/s) sin 53 16 m/s,  see Fig. 4.17. 

At the apex A  of the trajectory, the velocity has only 

horizontal component, while yv  vanishes. In order to 

find the instant At  at which the projectile reaches point 

,A  we substitute tA for t into Formula 4.10 and equate 

the obtained result to zero. 

 2
(16 m/s) (10 m/s ) 0,At   

which gives 1.6 s.At   

Since the point from where the projectile was launched 
and the point on the ground where it lands are at the 

same horizontal level, the time of flight is equal to 2 At . 

16 m/s 

12 m/s 

y 

20 m/s 

O 

53 

B 

x 

A 

 

Fig. 4.17 

 2 2 1.6 s 3.2 s.AT t     
 

 Can you find T  by using Eq. 4.12? 
 

(b) The projectile lands on the ground at point B, see 

Fig. 4.17. What are the coordinates of point B? 
On multiplying the horizontal component of velocity 

0( )x xv v  by the time of flight ,T  we obtain the x- 

coordinate of the point where the projectile falls. 

 (12 m/s) (3.2 s) 38.4 m.BR x     

Thus, the coordinates of point B  are (38.4, 0) m. 
We could have calculated the range of the projectile by 

directly using the Formula 4.16. But it must be borne in 

mind that a line of reasoning/approach is more 

important than a formula. 
 

(c) What is the maximum height above the ground 
attained by the projectile during the course of its flight?  

Formula 4.12 gives the variation of y- coordinate with 

time. Substituting into this formula 1.6 sAt   for ,t  we 

obtain the y- coordinate corresponding to the apex A  

of the trajectory, which is the height H  to which the 

projectile ascends. 

2 21
(16 m/s) (1.6 s) (10 m/s ) (1.6 s) 12.8 m.

2
H      

You can verify that Formula 4.14 gives the same result. 
 

(d) At the moment t = 1 s, what is the y- coordinate of 
the projectile? 

Substituting 1st   and the values of other quantities 

into Formula 4.12 you get the y- coordinate of the 

projectile as 

 2 21
(16 m/s) (1 s) (10 m/s ) (1 s) 11 m.

2
y       

 

(e) What is the equation of the path followed by the 

projectile?  

Coordinates of the point where the projectile is at time t  

are 

 12x t  

and  21
16 (10) .

2
y t t   

Substituting 
12

x
t   from the first equation into the second 

we obtain the equation of the trajectory 

 24 5
.

3 144
y x x   
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(f) At what moment of time the height of the projectile 
above the ground is 11 m?  

We substitute 11 my   into Eq. 4.12 for obtaining the 

required time: 

 2 21
11 m (16 m/s) (10 m/s ) ,

2
t t   

which gives 1 st   and 2.2 s.  

For both upward and downward motions the 
acceleration of the projectile is same, the time it takes 

from 11-m height to the apex is same as the time of 

motion from the apex to a height of 11 m  again. It 

follows that the points are symmetrical about the apex 

,A  which means that the trajectory is symmetrical 

about point A, or more specifically, about the vertical 

line from the apex A. 
 

(g) At the moments the y- component of the 

displacement of the projectile is 11 m, what is its  

y- component of velocity? 
In the previous problem we computed the moments of 
time at which the height of the projectile above the 

ground is 11 m.  Using Eq. 4.10 we obtain the velocity 

of the projectile at these two moments,  

at 1 s,t   216 m/s 10 m/s 1 s 6 m/s,yv      

at 2.2 s,t   
2

16 m/s 10 m/s 2.2 s 6 m/s.yv       

The velocity of the projectile when it is at a height of 

11 m  from the launch point can also be calculated from 

Eq. 4.6d as follows: set 11 m,y   
2

10 m/sya    and 

0
16 m/syv   in this equation - 

 
2 2 2

(16 m/s) 2(10 m/s ) (11 m),yv     

which yields 6 m/s,yv    as expected. These 

velocities are shown in Fig. 4.18. 

6 m/s 

12 m/s 

6 m/s 

12 m/s 

11 m 11 m 
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Fig. 4.18 
 

(h) At the moment the y- component of displacement of 

the projectile is 11 m, what is the angle between its 
velocity and y- component of velocity? 
It suffices to know the two components vx and vy of the 

velocity at a moment (or a position) to compute the 

angle between the velocity and its y- component.  We 

calculated the y- component of velocity at 11 my   in 

the previous problem. The required angle can be 

obtained from the velocity diagram.  

12 m/s
tan 2,

6 m/s

x

y

v

v
   

or  1tan 2.   

 6 m/s 

12 m/s

 

 

 

(i) At what moment of time the velocity of the 

projectile is parallel to x- axis? 

At the apex of the trajectory velocity has only 

horizontal component, the vertical component yv  

vanishes. The projectile reaches the apex at 1.6 s;t   

thus, at this moment its velocity is parallel to x- axis. 
 

(j) At what moment(s) of time the x- component of 

velocity of projectile is twice the y- component in 

magnitude? 
This question was indirectly answered in Parts (g). 

However, alternatively, we can express the x- and y- 

components of velocity at moment t as 

 12 m/sxv   and (16 10 ) m/s.yv t   

The x- component of velocity is twice of the  
y- component in magnitude if 

 12 2 |16 10 |t   

  12 2(16 10 ),t   which gives 1 s,t   

and  12 2(16 10 ),t    which gives 2.2 st  . 
 

(k) At time t (t > 0), the coordinates of the projectile are 

(x, y). Find whether there is a value of t  for which 

2 .y x  

It can be shown that in the interval 0 3.2 s,t   there 

is no instant of time at which the y- coordinate is twice 

as large as x- coordinate. Using simple algebra we can 

show that the equation 2 ,y x  i.e., 21
16 12

2
t t t    

does not have any real solution in the interval 

(0, 3.2 s].  
 

(l) At the moment of time t1 (t1 > 0) the x- component of 

displacement of the projectile is twice of its  
y- component of displacement. What is the value of t1? 

Now we are so comfortable with formulas and 

formulations that the best strategy comes to our mind 
immediately. To arrive at the answer of this question 

we simply write 

 
2

1 1 1

1
12 2 16 10

2
t t t

   
 

 

which gives 1 2.0 s.t   
 

(m) At the moment the x- component of the 
displacement of the projectile is twice of its  

y- component of displacement, what is the angle 

between the x- component of velocity and velocity? 
In the previous problem we calculated the moment of 

time at which the x- component of the displacement is 

twice the y- component of the displacement. At this 
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moment of time ( 2.0s)t  , the x- and y- components of 

the velocity of the projectile are 
212 m/s and 16 m/s (10 m/s ) (2 s) 4 m/s,x yv v     

that is, 4 m/s  in downward direction. 

Here, the angle that is sought is given by 

4 m/s 1
tan

12 m/s 3
    

or  1 1
tan .

3

     
 

 

12 m/s 

4 m/s 

  

 

 

(n) Show that there is no instant of time t (t > 0) at which the 
position vector of the projectile is perpendicular to its velocity 
vector. 
From the two right angle triangles in Fig. 4.19,  

 

16 m/s 

12 m/s x = 12t 

10t – 16 

t 

t = 0 
y = 16t – 5t2 

12 m/s 

 

y 

20 

O B 

x 

 

Fig. 4.19 

 

216 5 12
,

12 10 16

x

y

vy t t

x v t t


  
 

 

which simplifies to 2
5 24 40 0.t t    

If the velocity vector of the projectile is perpendicular to 

its position vector at certain instant of time, the scalar 

product of these two vectors must equal zero at this 
instant. Figure 4.19 has been constructed under the 

assumption that the velocity of the projectile is 

perpendicular to its displacement at an instant .t  We have 

 2ˆ ˆ ˆ ˆ[12 (16 10 ) ] [12 (16 5 ) ] 0,i t j t i t t j       

which yields the same quadratic as above. 

Further, if we represent by 0v̂  the unit vector in the 

direction of initial velocity vector, then we can 

vectorially express the condition v r
 

 as 

 2
0 0

1
ˆ ˆ(20 ) 20 0.

2
v gt v t gt

     
 

 
 

To evaluate the scalar product in the above equation, 

note that the angle between unit vector 0v̂  and g


 is 

90 90 53 .      The same quadratic again! 

The quadratic equation 25 24 40 0t t    does not 

have any real solution. This implies that during the 
flight, the velocity of the projectile is never 

perpendicular to its position vector. 

A very fascinating implication of this result is that the 
projectile always moves away from the thrower. At the 

moment of projection the projectile has a velocity of  

20 m/s directed away from the thrower. As time passes, 

the velocity of separation decreases (can you show it?), but 

it never reduces to zero in this case. Throughout the 
motion the projectile has a component of velocity directed 

away from the thrower. Consequently, it moves away 

from him until it hits the ground. 

If the velocity vector were to become perpendicular to the 
position vector at some point in the trajectory, then, in the 

subsequent motion a component of velocity would be 

directed inside toward the point of projection, the 

projectile would be coming closer to the thrower. This 
situation does not arise in this example. The projectile 

always moves away from the thrower. 
 

 What is the maximum angle to the horizontal at 

which the projectile can be thrown and always be 

moving away from the thrower? See Example 6. 
 

(o) During its course of flight the projectile just clears 

two parallel walls each of height 11 m. What is the 
separation between the walls? 

As computed in Part (f), the projectile is at a height of 

11 m at the moments 1 st   and 2.2 st  . 

These are the moments at which the projectile clears the 

11-m high walls, one after the other, Fig. 4.20. On 

multiplying xv  by the time interval 2.2 s 1.0 st    

1.2 s  the projectile takes in clearing the walls, we 

obtain the separation between them 

12 m/s 1.2 s 14.4 m.xx v t       

53



t = 1 s t = 2.2 s 

11 m 11 m 

x 

y 

20 m/s 

O B 

x 

 

Fig. 4.20 

(p) At what moment of time t the velocity of the 

projectile is perpendicular to its initial velocity? 

Figure 4.21 solves this problem immediately. 

37 

t = t 

53 

90 

v 

90

 
t = 0 

16 m/s 

12 m/s x = 12t 

12 m/s 

37 

y 

20 m/s 

O B 

x 

 

Fig. 4.21 

From the triangle of velocities at time t  we see that 

tan 37 ,
12

v
  which gives 9 m/sv    9 m/s,yv    

whence 2
9 m/s 16 m/s (10 m/s )t   , giving 2.5 s.t   

We can approach this problem in many other ways. 
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(i) ˆ ˆ ˆ(12 (16 10 ) ) (12 16 ) 0.i t j i j      Expand the dot 

product to obtain 25 s.t   

(ii) 0 0ˆ ˆ(20 ) (20 ) 0,v g v  


 where 0v̂  is the unit vector 

in the direction of initial velocity. Clearly, the angle 

between 0v̂  and g


 is 90 53 .   Expand the dot 

product for answer. 
(iii) The choice of the coordinate axes shown in Fig. 4.22 

turns out to be extremely convenient. Let the velocity of 

the projectile be perpendicular to its initial velocity at 
instant t. The x- components of velocity at this moment 
must be equal to zero. 

y 

(v0x = 20 m/s, v0y = 0) 

53 8 m/s2 

10 m/s2 

6 m/s2 ax = –8 m/s2 

ay = –6 m/s2 

53 

t 

 

20 m/s 

O 

x 

 

Fig. 4.22 

Apply 
x x x

v u a t   to the motion of the projectile -  

 2
0 (20m/s) ( 8m/s ) ,t    

which gives 2.5s.t   
 

(q) What is the change in the velocity of the projectile 
in the time interval t = 0 to  t = 1.6 s? 

In case the acceleration of a body is constant, the 

change in velocity v


 in time interval t  is related to 

the (constant) acceleration a


 as .v a t  
 

 Hence,  

 2ˆ ˆ( 10 m/s ) (1.6 s 0) 16 m/s.v j j      


 
 

 Use 
2 1

v v v  
  

 to arrive at the answer. 
 

(r) What is the average acceleration of the projectile in 

the time interval t = 0 to t = 1.6 s? 

In Section 3.3.2, Chapter 3 we showed that for a 
uniformly accelerated motion the average acceleration 

over any interval of time is same and equal to the 

instantaneous acceleration. Therefore, the average 

acceleration of the projectile in the time interval 0t   

to 1.6 st   is 2 ˆ10 m/s .j  

You can also use the definition of average acceleration 

and find the answer. 
 

(s) In the time interval t = 0 to t = 1.6 s, what is the 

average velocity of the projectile? 

For a uniformly accelerated motion the average velocity 
in any time interval is 

 ,
2

av

u v
v



 

 

where u


 and v


 are the velocities at the beginning and  

at the end of the time interval. At the initial moment 

0t  , the velocity of the projectile is ˆ ˆ(12 16 ) m/si j  

and at the moment 1.6 s,t   its velocity is 12 m/si . 

Substituting these values in the above formula we 

obtain the average velocity of this time interval, 

 
ˆ ˆ ˆ(12 16 )m/s (12 ) m/s ˆ ˆ(12 8 ) m/s.

2
av

i j i
v i j

 
  


 

We shall now calculate the average velocity using its 
definition: it is the displacement divided by the time 

interval in which the displacement was undergone. 

From the solution of Parts (b) and (c), we can see that 

the displacement of the projectile in the time interval 

0t   to 1.6 st   is ˆ ˆ(19.2 12.8 ) m.r i j 


 (How?) 

Therefore, the required average velocity is 

 
ˆ ˆ(19.2 12.8 ) m ˆ ˆ(12 8 ) m/s.
1.6 s

av

i j
v i j


  


  

 

(t) If vav represents the average speed and | |
av

v


 the 

magnitude of the average velocity for the time interval  

t = 0 to t = 1.6 s, show that | | .
av av

v v


 

It is obvious that the length of the curve (parabola) is 

greater than the length r  of the chord in Fig. 4.23. 

Hence the average speed avv  is larger than magnitude 

of average velocity | | .avv


 This statement is true for 

any time interval. 

s 

r 

y 

O 

x 

 

Fig. 4.23 

(u) A girl located on x- axis 60 m away from the point 

of projection starts running at the moment the projectile 

is thrown. How fast, and in which direction must she 
run in order to catch the projectile at the level from 

which it was thrown, if she runs at a constant speed? 

We shall use the solution of Parts (a) and (b). To catch 

the projectile at the same level from which it was 
thrown the girl must cover a distance of 

60 m 38.4 m 21.6 m   in 3.2  seconds. Hence she 

must run at a speed of  21.6 m / 3.2 s  6.75 m/s  

towards the point of projection. 
 

(v) A catcher is standing on x- axis 36 m away from the 

point of projection, see Fig. 4.24. How far above its 
initial level is the projectile caught? 

Projectile reaches the catcher in 36 m / (12 m/s) 3 s.  

At this moment of time the projectile is at a height of  

2 21
(16 m/s) (3 s) (10 m/s ) (3 s) 3 m.

2
h        
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Either the catcher is really tall or good at jumping! 

38.4 m 36 m 

20 m/s 

y 

O 

x 
h 53 

 

Fig. 4.24 

(w) The catcher in Part (v) sees the projectile when it is 
right above his head and decides to run and catch it 
before it falls on the ground. If his reaction time is 0.5 

s, will he succeed? 
No. The projectile comes to the initial level with launch 

point in 3.2 s 3 s 0.2 s,   whereas the catcher requires 

0.5 s  to start running. 
 

(x) At what moment of time is the speed of the 

projectile 15 m/s? 

The formula 2 2
x yv v v   gives 

 2 2 2(12m/s) (16m/s (10m/s ) ) 15,t    

or  0.7 s, 2.5 s.t   
 

(y) At the instant t = 0.7 s, what are the normal and 

tangential components of the acceleration of the 
projectile? 
The normal component of acceleration is the 

component that is perpendicular to the velocity vector, 

while the tangential component is in the direction of 
velocity vector. You are advised to revisit this problem 

after going through Section 4.5.1. 

At every moment of time during the flight the 

acceleration of the projectile is in the downward 
direction and is equal to the acceleration due to gravity 

g . As shown in Fig. 4.25, the normal and tangential 

components of the acceleration are cosNa g   and 

sin .a g     

a 

 

16 m/s 

12 m/s t = 0 

9 m/s 

g 

12 m/s 

 

 aN 

v 
y 

O 
x 

 

Fig. 4.25 

The angle  can be obtained from the velocity diagram. 

At the moment 0.7 st   the horizontal and vertical 

components of velocity are 12 m/sxv   and 

2
16 m/s 10 m/s 0.7 s 9 m/s.yv      From the 

velocity diagram we get 
3

tan ,
4

   which gives 

37 .    Therefore, 

 2 24
cos 10 m/s 8 m/s

5
Na g      

and  2 23
sin 10 m/s 6 m/s .

5
a g          

Pay attention to the fact that the tangential acceleration 

is negative at the given moment. Does the tangential 
acceleration of the projectile have a negative value at 

all positions during its motion? 
 

(z) At what moment of time the magnitude of tangential 

component of acceleration of the projectile is 

maximum? 

We observe that the angle  in Fig. 4.25 assumes its 

maximum value at moments 0t   and 3.2 st  . 

Hence, obviously, these are the moments at which the 
tangential acceleration of the projectile will have its 

maximum value. See solution of Part (y)   

At what moment of time the normal component of the 
acceleration of the projectile has its maximum value? 

This happens when the angle  (Fig. 4.25) is the least. 
At the apex of the trajectory, the velocity of the 
projectile is perpendicular to its acceleration, the radial 
acceleration becomes equal to the acceleration due to 

gravity 210 m/sg  . 

At what moment(s) of time the magnitude of the normal 

acceleration is twice the magnitude of the tangential 
acceleration? 

We shall correlate the acceleration diagram to the 

velocity diagram to obtain the vertical components of 

the velocity at the moment the given condition is 

satisfied, see Fig. 4.26. Since 2 | |Na a  we have 

cos 2 sing g     or 
1

tan .
2

    The velocity 

diagram gives  

 tan 6 m/s.y xv v     

Now substituting this value of yv  into Eq. 4.10, we obtain 

 2
16 m/s 16 m/s ( 10m/s )t    or 1 1 st   

and  
2

2
6 m/s 16 m/s ( 10 m/s )t     or 

2
2.2 s.t   

vy 

 
vx 

|a|  aN 
 a aN 

y 

O 
x 

g g 

 

Fig. 4.26 
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Example 4. A particle is projected from a horizontal  

x-z plane such that its velocity vector at time t  is given 

by ˆ ˆ( ) .v ai b ct j  


 Find (a) time of flight T;  

(b) maximum height H; (c) range R. 
(a) The time of flight is the time taken for the vertical 

displacement to become zero. We have  

 yv b ct   

or  
dy

b ct
dt

   

or  
0

( ) .
t

y b ct dt   

If y becomes zero again after time ,T  

 
2

0 ,
2

cT
bT   

which gives 
2

.
b

T
c

  

(The solution T = 0 corresponds to instant of projection.) 
Alternatively, the vertical velocity becomes zero at 

time given by 0b ct   or 
b

t
c

 , and time of flight is 

twice this time, (why?), hence 
2b

T
c

 . 

(b) The maximum height is the displacement in  

y- direction at the moment the y- component of velocity 
is zero. 

We know that 
y

v  is zero at 
b

t
c

 . So the maximum 

height is 

 
/

0

( )
b c

H b ct dt  = 

2 2

.
2 2

b c b b
b

c c c

       
   

 

Alternatively, the motion of particle is one with 

constant acceleration. (Can you see this?) Application 

of Eq. 4.6d gives 

 2 2
2y y yv u a H   

or  2 2
0 2( )b c H    

or  
2

.
2

b
H

c
  

Further, the displacement in the vertical direction in 

time t is 

 
2

0

( )
2

t
ct

y b ct dt bt     

 2 2

2

c b
t t

c

     
 

 

2 2

2 2
2

c b b b
t t

c c c

                
       

 

 

2 2

2

c b b
t

c c

           
     

 

 

22

2 2

b c b
t

c c

    
 

. 

Clearly, for y to be maximum second term in the above 

expression must be zero. Hence 
2

.
2

b
H

c
  

(c) Range is the horizontal displacement in the time of 

flight. Hence, 
2 /

0

b c

x
R v dt 

2 /

0

2
b c

ab
adt

c
  . 

An alternative solution to the whole problem: compare 

the given velocity ˆ ˆ( )v ai b ct j  
 with the velocity 

of a  simple familiar projectile  

 
0 0

ˆ ˆcos ( sin )v v i v gt j   


 

term by term - 

 
0 0cos , sinv a v b     and .g c  

The problem henceforth reduces to the computation of 

T, H and R in projectile motion. 
 

Example 5. As shown in Fig. 4.27, a particle is 

projected from point A at angle  to the horizontal 

where    . Find the speed of projection of the 

particle so that it just grazes the inclined wall? 

 

Wall g 

O 

l0 

  

A 

 

Fig. 4.27 

Let the particle be projectile with speed 
0
.v  At the 

moment the particle grazes the wall its velocity vector 

is parallel to it (why?). Let 
0x  and 

0y  be the horizontal 

and vertical displacements of the particle at that instant.  

l0 

  

v0 

y  

O 

y0 

x0  

Fig. 4.28 
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From Fig. 4.28, 

 0

0 0

tan .
y

l x
 


 …(i) 

Also, the velocity of the particle at time t  is 

 
0 0

ˆ ˆ( cos ) ( sin ) .v v i v gt j    


 

The time when the velocity vector makes angle  with 
the horizontal is given by 

 0

0

sin
tan

cos

v gt

v


 


 

which gives 0 sin( )
.

cos

v
t

g

 



 

At this time, 

 
2

0

0 0

sin( ) cos
( cos ) ,

cos

v
x v t

g

 
  


 

and  2

0 0

1
( sin )

2
y v t gt    

 
2 2 2

0 0

2

sin sin( ) sin ( )
.

cos 2 cos

v v

g g

   
 

 
 

Substituting 
0

x  and 
0

y  into Eq. (i) we get 

 

2 2 2

0 0

2

2

0
0

sin sin( ) sin ( )

cos 2 cos
tan ,

sin( ) cos

cos

v v

g g

v
l

g

   


 
 

 




 

which, after some simple trigonometry, gives 

 0

0 2

2 sin cos
.

sin ( )

gl
v

 


 
 

Alternatively, the equation of trajectory of the particle 
in the coordinate system shown in Fig. 4.28 is 

 
2

2 2

0

tan
2 cos

gx
y x

v
  


 

and that of the wall projected onto the plane of the 
trajectory of the projectile is 

0(tan )( )y x l   . 

If the particle just grazes the wall, then the points of 
intersection of the above two curves must coincide. If 

these equations have two distinct solutions, the particle 

hits the wall; no real solution implies that the particle  
misses the wall. 

On eliminating y  from the two equations we get 

 2

02 2

0

(tan tan ) tan 0.
2 cos

g
x x l

v

 
        

 

The roots of the above equation coincide if 

 2

02 2

0

4
(tan tan ) tan

2 cos

g
l

v
    


 

or  0

2

2 2 2 2

0

2 tansin ( )

cos cos cos

gl

v




  
 

or  0

0 2

2 sin cos
.

sin ( )

gl
v

 



 

In this method the condition     is not needed. Can 

you reason it out geometrically?  

Here is the smartest way to solve this problem. 
Choosing a coordinate system wisely does wonders at 

times. 

We choose a coordinate system as shown in Fig. 4.29. 

Clearly, 
0 sinl   is the maximum y- displacement if the 

particle grazes wall. 

 

 –  

y  

x 

l0 sin 

 

(a) 

 

g  
g cos  g sin  

(b) l0 

  

v0 

O 

l0 sin  

 
Fig. 4.29 

Substituting 
0 0 sin( )yv v  , 0,yv   cosya g   , 

and  
0 0 siny l   into Eq. 4.6d we obtain 

 2 2

0 0
0 sin ( ) 2( cos ) sin ,v g l       

which gives 0

0 2

2 sin cos
.

sin ( )

gl
v

 


 
 

 

Example 6. What is the maximum angle to the 

horizontal at which a stone can be thrown and always 

be moving away from the thrower? 
If the stone is projected at a large angle to the 

horizontal, say 80 or so, it can be intuitively figured 
out or can be inferred by a look at the trajectory  
(Fig. 4.30) that its distance from the thrower will first 

increase and then decrease, attaining a maximum value 

in between. 
For some time the stone moves away from the point of 
projection, velocity component on the line connecting 

the point of projection to instantaneous position of the 

stone is directed away from the thrower as shown in the 
figure. It can be further seen that with the passing of 

time the velocity of separation decreases. At a certain 

moment of time the velocity of separation becomes 

zero. This happens at the moment when the velocity of 
the stone is perpendicular to its position vector. 

Thereafter, the velocity component projected on the 

position vector is directed towards the point of 
projection; the distance of the stone from the thrower 
decreases. 

The above argument immediately gives us a way to 

solve the problem: the angle of projection must be such 
that the velocity of the stone is never perpendicular to 

its position vector during its flight, that is, the stone 
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must always have a velocity of separation as seen by 

the thrower. 

 

80 

dmax 

x 

v 

y v1 

v2 

v1p 

O  

Fig. 4.30 

As in Example 3 (Part n), to start with develop the 

equation that gives the moment of time t  at which the 

velocity of the stone is perpendicular to its position 
vector. From this equation find the values of   for 

which it has no real solution. That’s it! 

We can develop the required equation in the following 

ways. 
(i) Figure 4.31 shows the velocity and position vectors 

of the stone at a certain instant t. If tv


 is perpendicular 

to tr


, we have 0,t tr v 
 

 which can be written as 

 
x 

v 

tr


 
tv


 

O  

Fig. 4.31 

 21ˆ ˆ ˆ ˆ( cos ) ( sin ) cos ( sin ) 0
2

v ti v t gt j v i v gt j
            

  
which gives 

 
2

2

2

3 sin 2
0.

v v
t t

g g

 
   
 

 

(ii) We can express the scalar product of the position 
and velocity vectors without resorting to components 

and proceed straightaway as below. 

We have 0t tr v  
 

or 21
( ) 0

2
vt gt v gt
     
 

   
 

 
 

g


 

v


 

or  2 2 2 2 31 1
cos(90 ) cos(90 ) 0

2 2
v t vgt vgt g t          

which gives 

 
2

2

2

3 sin 2
0

v v
t t

g g

 
   
 

. 

(iii) The motion of the stone is given by the following 
equations (Fig. 4.32): 

 2cos , sin ,
2

g
x vt y vt t      

 cos , sin , (say).
x y

v v v v gt v       

 

v 

x 

v 

v 

y 

vx 

x 

 y 

O 
 

Fig. 4.32 

It can be seen from the figure that at the instant the 
velocity of the stone is perpendicular to its position 

vector, ,x x

y

v vy

x v v
 


 which yields the equation  

 

2

2

2

23 sin
0.

vv
t t

g g


    

If the velocity of the stone is never perpendicular to its 
position vector, the discriminant of the quadratic 

equation in t must be negative, that is, 

 

2
2

2

3 sin
8 .

v v

g g

  
   

   
 

Thus, for the stone to be always moving away from the 

thrower, we must have sin 8 / 9 0.94,    i.e.,  

 < 70.5°.  
 

4.4.2. Motion of a Body Thrown 

along the Horizontal 
 

Let us consider the motion of a body thrown along the 

horizontal and moving only under the action of the 
force of gravity. We shall again ignore the air 

resistance. Let us, for example, throw a particle from a 

tower, its initial velocity v0 being directed along the 

horizontal, Fig. 4.33(a). 
We shall analyze the motion of the particle onto the 
(downward) vertical y- axis and the horizontal x- axis. 

The motion of the particle on the x- axis is the motion 

with zero acceleration at a velocity vx = v0. The motion 
in the y- direction is a free fall with an acceleration  

ay = g under the action of the force of gravity with zero 

initial velocity. 

 v0 

vx 

v 
vy 

v0 
x 

y 

O 

(a) (b)  

Fig. 4.33 

The vx component remains constant and equal to v0. The 
vy component varies with time as: vy = gt. The resultant 
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velocity can be easily found with the help of the 

parallelogram rule as shown in Fig. 4.33(b).  
In the coordinate system shown in the figure on the 

assumption that it was projected from the origin at 0,t   

the coordinates of the particle at a moment t will be 
 x = v0  t, 
 

and 21
.

2
y gt  

In order to find the equation of the trajectory, we 

express t in the first equation in terms of x and 
substitute it into the second. This gives 

 .
2

2

2
0

x
v

g
y   

The graph of this function is shown in Fig. 4.33(b). 
Such trajectories are called parabolas. Thus, a freely 

falling body with an initial horizontal velocity moves 

along a parabola. 
The distance covered in the vertical direction does not 
depend on the initial velocity. However, the distance 

covered in the horizontal direction is proportional to the 

initial velocity. Therefore, at a high initial horizontal 
velocity, the parabola along which the particle falls is 

stretched in the horizontal direction.  

If we know the initial velocity v0 and the height h from 
which the body is thrown, we can calculate the 

horizontal range R to the place where the particle falls. 

On substituting y = h and x = R, in the above equation 

we obtain 

 0

2
.

h
R v

g
  

 

 A ball rolling off a table of 1 m height lands at a 

distance of 2 m from the edge of the table. What was 

the horizontal velocity of the ball? Neglect air 

resistance. Take 2
10 m/s .g   

 

 Example 7. Assume that a projectile is launched from 

a tower of height 16 m with a velocity 20 m/s making an 

angle of 53 with the horizontal, see Fig. 4.34. 

 

x ( î ) 

53 

20 m/s y ( ĵ ) 

t = 0 

Tower 

O Ground 

16m 

 

Fig. 4.34 

(a) How long does the projectile take to hit the ground? 

Substituting 0 16 m/syv  , 2
10 m/sya    and 

16 m,yS    into Eq. 4.6b we obtain 

  2 21
16 m (16 m/s) 10 m/s

2
t t    

which gives 4 s.t   The above equation yields a 

negative root also. Can any physical interpretation be 

assigned to this root? 
 

(b) How far from the base of the tower does the 

projectile hit the ground? 

On multiplying xv  and the time of flight we obtain the 

x-coordinate of the point where the projectile falls on 

the ground: 12 m/s 12 s 48 m.x     
 

(c) What is the maximum height above ground attained 
by the projectile? 

Analyzing the y- component of motion we obtain 

 

2 2
0

max 2

(16 m/s)
16 m 28.8 m.

2 2 10 m/s

yv
h h

g
    


 

 

(d) With what velocity the projectile lands on the 

ground? 

The x- component of velocity remains constant and 

equal to its initial value 0 cos 12 m/s,v    because the 

x- component of acceleration is absent. The  

y- component of velocity varies according to the 

Formula 4.10. Substituting 4 st   into this formula we 

obtain 2
16 m/s 10 m/s 4 syv    24 m/s.   The 

projectile lands on the ground with velocity 

ˆ ˆ(12 24 ) m/s.v i j 


 
 

(e) The projectile just crosses a wall of height 8.8 m. 

How sooner after the launch the projectile does this? 

When the projectile is just above the wall, its 

displacement in y- direction is (16 m 8.8 m)   

7.2 m  . Using Formula 4.12 we obtain  

7.2 m   2 21
(16 m/s) 10 m/s ,

2
t t    which gives 

3.6 s.t   Why did we neglect the other root of this 

equation? 
 

(f) With what velocity the projectile crosses the wall in 

Part (e)? 

 0 0
ˆ ˆ ˆ ˆ( )x y x yv v i v j v i v gt j    


 

 2ˆ ˆ12 m/s (16 m/s 10 m/s 3.6 s)i j     

 ˆ ˆ(12 20 ) m/s.i j   
 

(g) What is the horizontal distance between the wall 

and tower in Part (e)? 

 wall 0 12 m/s 3.6 s 43.2 m.xx v t      
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(h) What is the equation of the path of the projectile in 

the coordinate system given in the figure? 

The x- and y- coordinates of the projectile vary with 

time according to the laws (Fig. 4.35): 

 12x t  

 2
16 16 5 .y t t    

In order to find the equation of the trajectory, we 

substitute 
12

x
t   from the first equation into the 

second. This gives 

 

2

16 16 5 .
12 12

x x
y

        
   

 

O 
x 

y 

t = 0 
t (x, y) 

16 m 

 

Fig. 4.35 
 

(i) At what moment of time the speed of projectile is  
24 m/s? 

Using 2 2

x y
v v v   we can write 

 2 2(12 m/s) ((16 10 )m/s) 24 m/st    

which yields 3.68 s.t   
 

Example 8. A cannon situated on the top of a hill of 

height 3000 m fires two shots, each with the same 

speed 100 3  m/s at some interval of time, one shot 

upwards at an angle of 60 with the horizontal and the 
other shot horizontally. The shots collide in air at point 

P. Take g = 10 m/s2. Find 

(a)  the time interval between the firings; 

(b) the coordinates of the point P. Take origin of the 
coordinate system at the foot of the hill right below the 

cannon. 
You can put forward many arguments to show that the 

shot fired at the angle of 60 to the horizontal takes a 
longer time to reach point P (you must do it), therefore, 

it was fired first. 

Let the first shot be fired at 0t  , and the second shot, 

fired in the horizontal direction, at moment ,t T  and 

the two shots collide at point P  at moment .t t  

Figure 4.36 sketches the motion of the shots. On 

equating the horizontal and vertical displacements of 
the two shots, since they reach point P  simultaneously, 

we get 

 (50 3 m/s) (100 3 m/s)( )t t T   

and 2 2 2 21 1
(150m/s) (10m/s ) 0 ( ) (10m/s )( ) .

2 2
t t t T t T       

 

3000 m 

y 

x 

50 3 m/s  

150 m/s  

Second shot (fired at t = T) 

First shot (fired at t = 0) 

60 

O 

P, t 

100 3 m/s  

1000 3 m/s  

y 

60 

x 

 

Fig. 4.36 

On solving these two equations we obtain 20 s,T   

and 40 s.t   This implies that the first shot travels for 

time 40 st   before hitting the other shot. 

Displacement of the first shot in the x- and y- directions 

in this time are 

 50 3 m/s 40s 2000 3 m 2 3 kmxS      

and  (150 m/s) (40 s)
y

S   2 21
(10 m/s) (40 s)

2
    

 2000 m = 2 km.    

Pay attention to the coordinate system given in the 

problem. The y- component of the displacement of shot 
1 from the cannon is –2 km, that means 2 km 
downward form the point of projection; the  

y- coordinate of point P is 3 km 2 km 1 km.   

The coordinate of point P  are (2 3,1) km.  

Alternatively, without delving on which shot was fired 

first, you can proceed by simply assuming their times of 
motion until they collide. Assume the time of motion of 

the first shot is 
1t  and that of the second shot is 

2 .t  

This immediately gives 

 
1 2(50 3 m/s) (100 3 m/s)t t  

and  2 2 2 2

1 1 2 2

1 1
(150 m/s) (10 m/s ) 0 (10 m/s )

2 2
t t t t     

which give 
1

40 st   and 
2

20 s.t   Now you can 

proceed further. 
 

 (i) What are the equations of the trajectories of the 
two shots in the coordinate system given in the 

problem? 

(ii) Can a time interval between the firings ensure that 
the two shots hit each other at the point which is at the 

same horizontal level as the foot of hill? If yes, what is 

it equal to? 
 

Example 9. A man stands on the top a tower and 

throws a ball at a speed of 10 m/s at an angle  to the 
horizontal. The height of the tower is 10 m and the ball 
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strikes the ground at a distance of d from the foot of the 

tower. Find the value of  for which the distance d is a 
maximum. Take g = 10 m/s2. 

Take a coordinate system whose origin coincides with 

the base of the tower, x- axis is horizontal in the plane 

of the trajectory of the ball and y- axis is vertically 
upwards. (Fig. 4.37). 

 y 

10 m 

v 

 

O 
d 

x 

 

Fig. 4.37 

If the ball strikes the ground in time t, 

 2 21
10m (10sin ) m/s 10m/s

2
t t        

which gives t = sin  + 22 sin .   

Distance of the point where the ball strikes from the 

base of the tower where is 

 d = (v cos)t 

 = (10 cos )  (sin + 22 sin  ). 

On differentiation of the expression for d  and some 

rearrangement we obtain   

   2
2

2

cos
10 sin 2 sin sin .

2 sin

dd

d

            
 

The condition 0
dd

d



 gives the value of  at which d  

is maximum. For 0 ,
2


    2(sin 2 sin ) 0,      

therefore, we have 

  sin  +
2

2

cos
0,

2 sin




 
 

which on simplification gives 

 
1

sin
2

   0
2

    
 

 

or   =  30. 
It is left to you to perform the second derivative test (or 

otherwise) to ascertain that at  = 30, the value of d  is 

maximum. We substitute 30    into the expression 

for d  to obtain  

 
3 1 1

10 2 10 3 m.
2 2 4

md
  

       
  

 

For the beginners who are not introduced to calculus 

yet, here is a graphical method to arrive at the answer. 

At this level we do not apply such methods for problem 

solving. However, it is important to be familiar with 

such alternative methods. Let us project the ball with 
speed 10 m/s at different angles from the horizontal, 

and compute the horizontal distance of the point where 

it lands on the ground from the base of the tower each 

time. The results of this experiment are complied in 
Table 4.1 
 

Table 4.1: Dependence of d  on  
 

, degrees t, s d, m 

0 1.41 14.1 

15 1.70 16.4 

30 202. 17.3 

45 2.30 16.1 

60 2.50 12.5 

90 2.70      0 
 

Next we construct the d- graph, plotting  and d on 
two mutually perpendicular axes, Fig. 4.38. 
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20 
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, degrees 

d, m 

 

Fig. 4.38 

From the graph it can be seen that as the angle of 

projection  increases, the distance d of the point where 
the projectile falls from the base of the tower first 

increases, attains a maximum value at a certain angle of 

projection and then decreases, becoming zero at 

90 .    When  = 90,  the projectile moves in vertical 

direction. It can be observed from the graph that d  

attains its maximum value 17.3 mmd   at the angle of 

projection 30 .     
These solutions involve lengthy cumbersome calculations. 
But one must be able to perform them when asked to. You 
must know the steps to be followed and the calculations 
involved in graphical method. This will help you in your 
practical classes. However, for such seemingly tedious 
problems we have fortunately some short elegant methods 

employing mathematics in ingenious ways. See the solution 

of this problem in Example 35.  
 

4.4.3. Projectile Motion on an Inclined 

Plane 
A projectile is fired up an incline with an initial speed 

0v  at an angle  to the horizontal as shown in Fig. 4.39. 

The angle of the incline is  to the horizontal. 
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v0 
R 

  

 

Fig. 4.39 

As in Section 4.4, we choose the coordinate axes so that 
the x- axis is horizontal and y- axis lies in the same vertical 

plane with the initial velocity 0v . The x- component of the 

initial velocity is 0 cosv   while the y- component is 

0 sinv   (for the directions of x- and y- axes shown in Fig. 

4.40). Since the x- component of acceleration is absent, the 

x- component of velocity remains constant and equal to the 

initial velocity 0 cosv  . 

The y- component of motion occurs under the 

acceleration due to gravity .g  

 

 

v0 sin  
R 

 

v0 cos  

v0 

y 

x 

ax = 0 

ay = –g 
P 

 

Fig. 4.40 

If the distance of the point P  where the projectile falls 

on the incline from the point of projection is ,R  the x- 

and y- coordinates of point P  are cosR   and  sinR   

respectively. If the projectile takes a time T  to hit the 

incline plane, the coordinates of point of impact are 
obtained from equations: 

 0cos ( cos )x R v T     

 2
0

1
sin ( sin ) .

2
y R v T gT      

Substituting for T  the from the first equation into the 

second and simplifying, we obtain 

 
2
0

2

2 sin( )cos
.

cos

v
R

g

 



 

It can be seen that for a fixed value of 0v , the 

expression for R  assumes its maximum value when the 

function sin( )cosf     is maximum. Using the 

first principal of maxima-minima or otherwise it can be 

shown that the function f  has its maximum value 

when 
4 2

 
   . Consequently, the maximum value of 

R  is obtained when the angle of projection 
4 2

 
   . 

We substitute 
4 2

 
  for  into the expression for R to 

obtain its maximum value: 

 
2
0

max .
(1 sin )

v
R

g


 
 

If the angle of projection is measured from the incline 
plane, not from the horizontal, then x- and y- 

components of the initial velocity are 0 cos( )v    and 

0 sin( )v  . Except this fact, every step in the above 

analysis remains in force, yielding a different 

expression for R , of course. Do you expect a different 

expression for 
max

R  also? 

Alternatively, we choose the coordinate axes so that x-

axis lies in the incline plane along the line of maximum 
slope, in the same vertical plane with the initial velocity 

0v , and y- axis perpendicular to the chosen x- axis, see 

Fig. 4.41. 

 

 v0 sin ( –  

v0 
y 

x 

g cos  

 v0 cos ( – ) 

g sin  

g 

ax = –g sin  

ay = –g cos  

 
 

Fig. 4.41 

The x- component of initial velocity is 0 cos( )v    

and the y- component is 0 sin( )v  . The acceleration 

of the projectile is g  in vertically downward direction. 

Resolution of g gives the components of the 

acceleration sin ,xa g   cos .ya g    

If the projectile falls on the incline at a point whose 

coordinates are ( ,0),R  we have 

 2
0

1
cos( ) ( sin )

2
R v T g T     

and 2
0

1
0 sin( ) ( cos ) .

2
v T g T     

Substituting for T  from the second equation into the 
first we get, after some simple trigonometry, 

 
2
0

2

2 sin( ) cos
.

cos

v
R

g

  



 

This approach is distinctly advantageous as compared 

to the previous one. Mathematical manipulations are a 

great deal simpler. If you measure the angle of 

projection from the inclined plane, instead of from the 
horizontal, you can further reduce the mathematics. We 
present the bare essential steps leaving the required 

manipulations to you 
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 2

0

1
0 ( sin ) ( cos )

2
v T g T    

 2

0

1
( cos ) ( sin ) .

2
R v T g T    

Substituting for T  from the first equation into the 

second we get 

 

2

0

2

2 sin cos( )
.

cos

v
R

g

  




  

Now assume sin cos( ) f     and set 0.
df

d
  You 

get .
4 2

 
    Hence 

 

2

0

max
.

(1 sin )

v
R

g 



 

 

 Demonstrate that if the projectile is fired with initial 

velocity 0v  down the incline, then the maximum range is 

2
0

max .
(1 sin )

v
R

g


 
 

 

 Example 10. A particle is thrown horizontally with a 

speed v from a point on a plane inclined at an angle  to 
the horizontal. The trajectory of the particle lies in the 

vertical plane that contains the line of maximum slope 

on the incline. (i) How far from the point of projection 

will the particle land on the plane? (ii) How long does 
the particle take to do it? (iii) What is the velocity of the 

particle at the moment it hits the plane? 
The choice of coordinate system in this problem is 

more than obvious. Choose the x- axis in the horizontal 
direction and y- axis in the vertically downward 

direction, (Fig. 4.42). 

The components of acceleration along the chosen 
coordinate axes are ax = 0, ay = g. Also,  

at    t = 0,  x = 0, y = 0, ux = v, vv = 0, 

and at    t = t,  x = d cos ,  y = d sin . 
(i) For the motion in x- and y- directions we obtain 

 d cos  = v t 

and d sin  = 0  t + 21
.

2
g t  

 O 

P 

v 

 

y 

x 

d 

 

Fig. 4.42 

Substituting for t from the first equation into the second 

and solving for d we obtain 

 
2

2
tan sec .

v
d

g

 
    
 

 

(ii) The time taken by the projectile to hit the plane 

 
cosd

t
v


  

 

22 tan sec
cos

2
tan .

v

g v

v g

  
        

 
 

We can also find t  by dividing the second equation 

developed in Part(i) by the first 

 

21

sin 2

cos

gt
d

d vt





 

or  tan
2

gt

v
   

or  
2

tan .
v

t
g

 
  
 

 

(iii) The y- component of the velocity of the projectile 

at the moment it hits the plane is 

 vy =  0 + g t = g  
2

tan
v

g

 
 

 
= 2v tan . 

Required velocity  

 2 2 2 2 2
(2 tan ) 1 4 tan .x yv v v v v v          

The velocity makes an angle of  

1 1
tan tan (2 tan )

y

x

v

v

      from the horizontal. 

 

Example 11. A small, elastic ball is dropped vertically 

onto a long plane inclined at an angle  to the 
horizontal. Is it true that the distances between 

consecutive bouncing points grow as in an arithmetical 

progression? Assume that collisions are perfectly elastic 

and that air resistance can be neglected. 
You will learn about collisions in Chapter 9. Here, it suffices to know 

that on impact, the component of velocity of the ball that is 

perpendicular to the plane gets reversed, and the component along the 

plane remains unchanged. 

We know how to calculate the displacement undergone 

in the nth second in rectilinear motion with constant 

acceleration. This problem is no different. After a little 
rearrangement the problem can be reduced to a simpler 

problem as depicted in Fig. 4.43. 

It can be immediately seen that the time interval 

between any two successive impacts has be to the same, 

2

cos

u
T

g




. The distances between the consecutive 

bouncing points can be easily calculated as under: 

 2
1

1
sin ( )

2
S uT g T    
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 2 2
2

1 1
(2 ) sin (2 ) sin

2 2
S u T g T uT T

       
 

 

 
1

sin
2

uT g   2
(3 )T  

 2 2
3

1 1
(3 ) sin (3 ) (2 ) sin (2 )

2 2
S u T g T u T g T

       
 

 

 
1

sin
2

uT g    2
(5 )T  

 2 2
4

1 1
(4 ) sin (4 ) (3 ) sin (3 )

2 2
S u T g T u T g T

       
 

 

 
1

sin
2

uT g    2
(7 ).T  

It is obvious that 1 2 3, , ,...S S S  form an arithmetical 

progression. 

 u 

 

g sin  
g cos  

u 

 
 

 

S1 S2 S3 

u 
u 

g sin  

g cos  

 

Fig. 4.43 

You can also compute the displacements in time nT  

and in time (n – 1)T. Then compute 
( )th

,
nT

S  and show 

that S’s are in arithmetical progression. 

Alternatively, Fig. 4.44 shows the velocity-time graph of 
a motion with constant acceleration. Let the displacement 

undergone in the time interval (4 3 )T T  be denoted by 

S  and that in the interval (5 4 )T T  by S  . 

 

S S 

A 
B 

C D 

O T 2T 3T 4T 5T 

v 

t 

 

Fig. 4.44 

The difference S S   is equal to the area of the 

rectangle ABCD . This is all that you need to conclude 

that the distances between the consecutive bounces in 
the problem are in arithmetical progression. 

Further, you can also argue intuitively that the motion 
in the direction perpendicular to the plane consists of 

bounces of identical heights, i.e., of identical periods. 

The component of the take off velocity perpendicular to 

the plane is same after each bounce, and also the 
acceleration component perpendicular to the plane is 

same cosg   throughout the motion. And, since the 

acceleration along the plane is constant, the ball's 

average speed between bounces increases uniformly, 
and so the distances between two consecutive bounces 

increase in an arithmetical progression.  
 

4.4.4. Flight of Bullets 
When the velocities of projectiles are high, air resistance considerably 

alters their motion in comparison with the results of calculations 

carried out in the previous sections. If air resistance were absent, the 

maximum range of the projectile would be observed, as was 

mentioned in Section 4.4.1, at the angle of projection equal to 45°. 

The effect of air resistance on the flight of projectiles becomes 

weaker for larger projectiles for the reason the mass of a projectile 

increases as the cube of its size, while the force of air resistance 

increases as the square of its size. Thus, the ratio of air resistance to 

the mass of the projectile, i.e., the effect of air resistance, decreases 

with the increasing size. Therefore, for the same initial velocity of 

projectiles fired from a gun, their range increases with the calibre. 

It can be shown that air resistance leads to a change in the trajectory 

of a bullet such that the angle of inclination corresponding to the 

maximum range turns out to be less than 45° (it is different for 

different initial velocities of the bullet). At the same time, the 

horizontal range (as well as the maximum height of the flight) turns 

out to be much smaller. For example, for an initial velocity of  

800 m/s and angle of 45°, the horizontal range of the bullet is 
2

2

(800 m/s) sin90
64000 m =64 km

10 m/s




 in the absence of the 

resistance of the medium and assuming that acceleration due to 

gravity in constant 10 m/s
2
 at each point of the trajectory. However, 

for the same initial velocity, the maximum range of flight does not 

exceed 3.2 km, i.e., is reduced to less than 1/20 of the theoretical 

value. The maximum height attained by the bullet is reduced almost 

in the same proportion. 

The most advantageous angle of firing approaches 45°. Long-range 

guns fire at an angle close to 45°. Since projectiles rise in this case to 

a larger height, where the density of the atmosphere is lower, the 

effect of air resistance becomes less noticeable.  

B C 

A 

2 

1 

45° 

 

Fig. 4.45 

If the target C is at a distance less than the maximum range AB  
(Fig. 4.45), the projectile can hit the target in two ways: at an angle of 

inclination which is either less than 45° (grazing firing) or larger than 

45 (steep firing). 
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4.5. Uniform Circular Motion 
 

Consider a point that moves along an arbitrary x- axis at 

velocity 1v . Subsequently the point turns at right angles 

and moves along y- axis at velocity 2v . The velocity of 

the point changed in direction and if 2 1,v v  it changed 

in magnitude as well. In case 2 1,v v  the change in 

velocity arises solely because of change in the direction 
of motion. What is the direction of average acceleration 

of the point? Figure 4.46 shows that 2 1  
  
v v v  is 

directed inside of the curve. Hence, the average 

acceleration av

v
a

t






 is also directed inside the curve. 

 

2


v  

y 

x 

1v  

v  

1


v  

2v


 

Fig. 4.46 

If the point navigates a turn broken in two stages  

(Fig. 4.47(a)), it is subjected to two accelerations. If the 
turn is broken in three stages, the point will have three 

accelerations, as shown in (b). What about the 

acceleration of the point when the number of stages 
increases? The acceleration appears as in (c) as the 

number of stages is increased. 

When the line segments merge into an arc of a circle, 

the instantaneous acceleration is directed radially 
inward, toward the centre. This acceleration is called 

the centripetal (centre-seeking or directed toward 

centre) acceleration. 

 

a a 
a a 

a 

(a) (b) (c)  

Fig. 4.47 

Let us proceed to analyze the circular motion 

quantitatively. Figure 4.48 shows a point moving at 

constant speed v in a circle of radius r. 
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Fig. 4.48 

Suppose that in a small time interval t  the position 

vector of the point rotates through the angle   and 

change in its position is 2 1r r r  
  

. Since v


 is always 

perpendicular to r


, these two vectors change their 
directions by the same angle in any time interval. In the 

vector diagram for the equation 2 1 ,v v v    
 we know 

that 2 1| | | | .v v
 

 The direction of v


 is perpendicular 

to r


 directed toward the centre O  of circle, radially 

inward along the bisector of the angle   drawn within 

the circle. The triangles OAB and APQ are similar 

isosceles triangles. (How?) 
It follows from the similarity of the triangles that the 

ratios of their analogous sides are equal: 

 
| | | |

,
r v

r v

 


 
 

which gives | | | | .
v

v r
r

    
 

 
 

Since, t  is very small, | |r v t  


, and therefore we 

finally get 
2| |

.
v v

t r







 

From the definition 
0

| |
lim ,
t

v
a

t 

    


 we find that the 

magnitude of centripetal acceleration is 

 
2

.r

v
a

r
  …(4.17) 

The subscript r in ra  (at times denoted by 
N

a  also) 

indicates that the acceleration is in radial direction. As a 

vector equation we would write 

 
2

ˆ
r

v
a r

r
 


 

where r̂  is the radial unit vector directed outward as 

shown in Fig. 4.49. The figure also shows the velocity 
and acceleration of the point at three arbitrary points on 

the circular path. 

 

1a


 
1v


 

3v


 

3̂r  
3a


 2a


 

2v
  

2̂r  

C 

1̂r  
 

1 2 3 ...v v v  
  

 

1 2 3| | | | | | ...v v v v   
    

1 2 3 ...a a a  
  

 

1 2| | | |a a
  2

3| | ...
v

a
r

  


 

Fig. 4.49 
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Can you write the expression for centripetal 

acceleration of the point in terms of time period? The 
period T is the time it takes to complete one revolution. 

The point travels a distance of 2 r  in one revolution, 

so the speed is (2 ) /v r T  . 

As an alternative, the above derivation can be done in 

an absolutely simple way using calculus. 
Consider a point moving on a circle with constant 

angular velocity ,
v

r
   where v  is the speed of the 

point and r  is the radius of the circle, Fig. 4.50. 

 

O 

r sin t 
P 

r


 
t ˆ( )x i  

ˆ( )y j  

r cos t 

 
 

Fig. 4.50 

If the point is on positive x- axis at time 0,t   

.POx t    The position vector r


 of the point can be 

written in terms of unit vectors î  and ĵ  as 

 ˆ ˆcos sin .r r t i r t j   


 

On differentiating the position vector  r


 relative to 
time twice we get the acceleration vector. Note that r  

and  are constant. 

 ˆ ˆsin cos
d r

v r t i r t j
dt

     


 

and  2 2ˆ ˆcos sin .
d v

a r t i r t j
dt

     


 

By looking at the components of a


 we immediately 

conclude that its magnitude is 

2 2
2 v v
r r

r r

    
 

 and it 

must be directed opposite to .r


 Vector r


 is directed 

from centre O  to the point ,P  therefore, a


 must be 

directed from point P  to the centre .O  See Fig. 4.51. 

 

O 

2 r sin t 
2 r cos t 

r 

2r 
t ˆ( )x i  

ˆ( )y j  

P 

 
Fig. 4.51 

From the expression for the velocity vector v


 you can 

conclude that the magnitude of velocity is r  and it is 

directed along the tangent to the circle as shown in the 

figure.  
Another derivation that employs polar coordinates is 

given in Appendix 1. Students are advised to learn these 

derivations, as they turn out to be a formidable tool for 

problem solving. 
 

 Example 12. The coordinates of a particle at time t  

are given by 3sin 5x t  and 3cos 5y t . What is the 

speed of the particle? 

To get 
xv  and 

yv  we differentiate the corresponding x- 

and y- coordinates 

 15cos 5 ,
x

dx
v t

dt
   15sin 5

y

dy
v t

dt
   . 

Hence the speed of the particle  

 2 2 2 2 2 215 cos 5 15 sin 5 15 units.x yv v v t t      

Show that the trajectory of the particle is a circle.  
 

4.5.1. Acceleration in Curvilinear 

Motion 
Consider a point moving along a curved path, as shown 

in Fig. 4.52. In general, both the magnitude and the 

direction of the velocity may vary along its path. The 
radial acceleration associated with changes in the 

direction of the velocity is 
2

r

v
a

r
 , directed toward the 

centre of curvature, where r is the radius of curvature of 

the path at the given point. A small segment of the path 
can be treated as an arc of a circle. The figure shows 

one such circle. The radius of the circle thus generated 

is the radius of curvature of the path at that point and its 

centre is the centre of curvature. 

 
a 

ar 

 

Fig. 4.52 

When the speed of the point varies with time, there is 

also an acceleration along the tangent to the path: 

 ,
dv

a
dt

   …(4.18) 

in the direction of the velocity if the speed is increasing, 

and opposite to velocity if the speed is decreasing. The 
resultant acceleration of the point is the vector sum of 

these two components: 

 .ra a a   
 

Since ra


 and a


 are always perpendicular, the 

magnitude of the resultant acceleration is  



90 

 2 2 .ra a a   

In the special case of motion of a point in a circle, it is 

sometimes convenient to use the unit vectors ̂  and r̂  

shown in Fig. 4.53, where r̂  is directed radially 

outward from the centre and ̂  is in the direction of 

increasing . The magnitudes of these unit vectors are 
constant (equal to unity), but their directions change in 

time. The acceleration of the point is expressed as 

 
2

ˆˆ .
v dv

a r
r dt

   


 …(4.19) 

 

x 

y 

 

̂  r̂  

 

Fig. 4.53 

In uniform circular motion dv/dt = 0, so the acceleration 
has only the radial term. 
 

 Consider a particle moving in a circle with a variable 

speed, which means the angular velocity  varies with 

time. From the expression ˆ ˆcos sinr r t i r t j   


 

derive Eq. 4.19. 
 

 Example 13. The tangential acceleration a  of a 

particle moving in a circle of radius 2 m varies with 

time t  as in Fig. 4.54. Initial velocity of particle is zero. 

Find the time after which the total acceleration of the  

particle makes an angle of 45 with velocity? 

 a   (m/s
2
) 

45 
t (s) 

 

Fig. 4.54 

From the graph we can express the tangential 

acceleration a
 as a function of time .t  We have 

 (tan 45 )a t 
   

or  a t   

or  .
dv

t
dt

  

On integration we get 

 
2

,
2

t
v C   

where C  is a constant of integration. 

At 0, 0t v  , hence 0.C   

Thus the speed of the particle as a function of time is  
2

.
2

t
v   

The radial acceleration of the particle is 

 
2 4

.
8r

v t
a

r
   

The angle (which is given to be 45 at instant t) 

between total acceleration and velocity is same as the 
angle between total acceleration and tangential 
acceleration, see Fig. 4.55. (Is this always true? What if 

the particle were to decelerate?) 

 

4

8
r

t
a   

2

2

t
v   

a t   

45 

 

Fig. 4.55 

From the figure we have  

 

4

3

8tan 45
8

t

t

t
   

which gives 2 s.t    
 

4.6. Relative Velocity 
 

We shall now study the cases when one of the reference 

frames is in motion relative to another frame. Clearly, 
the second reference frame is also in motion relative to 

the first one. 
To begin with students are advised to read the following 

questions, and try to answer them intuitively or 
otherwise, before learning the concept and formulations 

of the relative velocity formally. You may not be able to 

answer them correctly, you must try nevertheless. 
(i) A girl is in a rectilinear non-uniform motion on a 

platform and the platform moves uniformly in a straight 

line relative to the ground, can the motion of the girl as 

seen from the ground be along a curved path? 
(ii) Under what condition is the motion of the girl 

rectilinear in (i), even if she is in non - uniform 
rectilinear motion on the platform? 
(iii) A boat covers a certain distance downstream in less 

time than it takes to cover the same distance  

upstream. Why? 

(iv) A swimmer covers 3 km in 3 hours in still water, 
and a log covers 1 km downstream during the same 

time. What distance will be covered by the swimmer 

upstream in the same time? 
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(v) A crawler tractor moves at a velocity of 5 m/s. What 

is the velocity of the (a) upper, and (b) lower parts of 
the crawler relative to the ground? What are the 

velocities of these parts relative to the tractor? 

The motion of any body has to be described relative to 

some frame of reference, such as the ground. 
Sometimes it is necessary to examine the motion of one 

body relative to another body that is also moving 

relative to the ground. For one-dimensional motion, it is 

easy to determine the velocity of one body relative to 
another. As an example, consider the rectilinear motion 

of two points. 

Assume that two points A and B move on parallel 
straight lines with velocities 1 m/s and 2 m/s 

respectively relative to the ground. Let the points be 

side by side at the initial moment t = 0, Fig. 4.56. 

 

A 

B 2 m/s 

1 m/s 
 

Fig. 4.56 

Positions of the points A and B at time t = 0, 1 s, 2 s, 3 s 
are drawn in Fig. 4.57. 
 

 

1 m 

1 m/s 

2 m/s 

t = 1 s t = 2 s t = 3 s 

t = 1 s t = 2 s t = 3 s 

2 m 

1 m 1 m 

2 m 2 m 

B 

A 

 

Fig. 4.57 

Now, imagine an observer fixed on point A who looks 

at point B. Equivalently, plant yourself at A and look at 
B. What do you observe? At initial moment t = 0, point 

B is on your side, 1 second later B is 1 m ahead of you, 
2 seconds later B is 2 m ahead of you, 3 seconds later B 

is 3 m ahead of you, and so on. We shall represent the 
position B as observed by you (which is also the 

position of B relative to A) by the symbol BAr , and in 

the same notation velocity of B  relative to A  as .BAv  

The position of point B  relative to point A is shown in 
Fig. 4.58(a) and plotted in (b). 

We shall apply Eq. 4.1 to the history of motion of point 

B  as ‘seen’ from point A to compute velocity of B 

relative to A as   

 
1 m 0 2 m 0 3 m 0

1m/ s.
1 s 0 2 s 0 3s 0

BAv
  

   
  

 

If you subtract the velocity of A relative to the ground 

from the velocity of B relative to the ground, you get  
1 m/s:  

 vBG – vAG = 2 m/s – 1 m/s = 1 m/s. 
This is exactly the velocity of B as calculated by the 

observer on A from the position versus time graph. 
 

 

A 

1 s 2 s 3 s 

1 m 2 m 3 m 
rBA 

(a) 

    1          2            3 

3 

 
 

2 
 

 
1 

 

t, s 

rBA, m 

0 

(b)  

Fig. 4.58 

Therefore, in this example you can obtain the velocity 

of point B relative to point A by subtracting the velocity 

of A relative to ground from the velocity of point B 
relative to ground. 

 vBA = vBG – vAG. 

Proceeding in the similar way, we can obtain the 

position vector of A relative B at moments t = 0, 1 s,  
2 s, 3 s…,  (Fig. 4.59(a)), and can generate the position 

versus time graph for the motion of point A as seen 

from the reference frame fixed at point B as in (b). 
Computation using the graph of Fig. 4.59(b) shows that 
the velocity of A relative to B is –1 m/s. Also, 

 vAB – vBG = 1 m/s – 2 m/s = –1 m/s. Hence, we 

conclude that 
 vAB = vAG – vBG. 

 t = 1 s t = 2 s t = 3 s 
B 

–2 m –3 m –1 m 
rAB 

(a)  

 

     1           2            3 

–1 

 
 

–2 

 

 
–3 

 

t, s 

rAB, m 

0 

(b)  

Fig. 4.59 

Now we shall consider the case in which the points A 
and B move in a plane in different directions. As a 

specific example, let us assume that A and B move in 

mutually perpendicular directions with constant 
velocities 1 m/s and 2 m/s as shown in Fig. 4.60(a). We 

also assume that the positions of A and B coincide at the 

initial moment t = 0. The positions of points A and B are 

drawn at the moments t = 0, 1 s, 2 s, 3 s in figure (b). 
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2 m/s 

1 m/s 
A 

B 
m52  

m53

m5  
t = 1 s 

t = 2 s 

t = 3 s 

t = 1 s t = 2 s t = 3 s t = 0 

B 

A 

(a)      (b)  

Fig. 4.60 

The position vectors of point B as seen from A at the 
moments t = 0,  1 s, 2 s, 3 s are drawn in Fig. 4.61(a). 

 

 

t = 1 s 

t = 2 s 

t = 3 s 

3 5 m  

2 5 m

5 m  

tan  = 2 
A 

5 m/ s

BG AGv v



 

 tan  = 2 

2 m/ sBGv 


 

1 m/ sAGv 


 

(a) (b) 

Fig. 4.61 

Now, the velocity of point B relative to A can be 
obtained by dividing the changes in position vector by 

the corresponding time intervals. That is, 

 5 m 0 2 5 m 0 3 5 m 0
5 m/ s,

1 s 0 2 s 0 3 s 0
BAv

  
   

  
  

in the direction of change in position vector, at an angle 

 where tan  = 2, as shown in the figure. 
We can show that we get this same velocity by 

subtracting the velocity of A relative to the ground from 

the velocity of B relative to the ground, Fig. 4.61(b). 
Arguing in the same fashion we can show that on 

subtracting the velocity of B relative to the ground from 
the velocity of A relative to the ground we get the 
velocity of A relative to B 

 .AG BG ABv v v 
  

 

In the above examples the points were in uniform 

motion. Now we shall show that the above formula is 

valid for non-uniform motions as well if we assume that 

,AB AGv v
 

 and BGv


 are the instantaneous velocities 

taken at the same instant of time. Let the position 

vectors of the point A and B from G (an origin on the 

ground) be denoted by AGr


 and BGr


. See Fig. 4.62. 

Let us denote the position vector of A from B by ABr


. 

These position vectors are related as 

 BG AB AGr r r   
 

or  AB AG BGr r r   
. 

 

BGr


ABr


 
AGr


 

x 

y A 

B 

G  

Fig. 4.62 

On differentiating both sides of the above equation 
relative to time we get the relationship between the 

velocities - 

 .
AB AG BG
v v v 
  

 …(4.20) 

Let us apply the concept of relative motion to a few 

simple problems. 
 

 Example 14. Let us solve Example 8 of Chapter 3 in 

a reference frame fixed at point A. 
Calculations in the reference frame fixed at the point A: 

Initial velocity of B, uBA =  4 m/s. 
Initial position of B, rBA = + 6 m. 

Acceleration of B, aBA = + 1.2 m/s
2 

At the moment points B hits A, rBA become zero. 

Hence, displacement of B is 6 m.
BA

S    

Using equation S = ut + 2

2

1
at  we get 

 6 m = (4 m/s)t +
2

1
(+1.2 m/s2) t2  

which gives t = 2.3 s, 4.4 s. 

 

B 

6 m 

4 m/s A 

t = 0 

 

Fig. 4.63 

Let us visualize the motion of point B when it is 
observed from point A. Initially point B was located  

6 m away from the A and had a velocity of 4 m/s 

directed toward A (Fig. 4.63). It moves towards the A 

with a reducing speed as the acceleration is in the 
opposite direction. (Initial velocity is directed towards 

left and acceleration towards right.) Point B crosses 

point A  at moment 2.3s,t   goes backwards comes to 

rest momentarily, starts moving in the forward 

direction, crosses A again at 4t s  and then  

surges ahead.  
 

Example 15. Two particles 1 and 2 have position 

vectors 
1
r


 and 
2

r


 at time t, where 2

1
ˆ ˆ(1 )r t i j  


 and 

2

2
ˆ ˆ3r i t j 


 where r  is in meters and t  is in seconds. 

Both the particles start moving when t = 0. At what 

moment of time they are closest together. 
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The position vector of particle 2 relative to particle 1 is 

 2 2

21 2 1
ˆ ˆ(2 ) ( 1) .r r r t i t j      

  
 

The distance d between the particle 1 and 2 is given by 

 2 2 2 2 2
(2 ) ( 1)d t t      

   4 2
2 2 5.t t    

2d
 has stationary values when 

2

0,
dd

dt
   

or 3 1
8 4 0 0, .

2
t t t      

 

t 

d 
2
 

 

Fig. 4.64 

The graph of 2d  versus t (Fig. 4.64) shows that d 
2 

is 

minimum when 
1

.
2

t    Therefore, the particle 1 and 

2 come to closest together at 
1

s.
2

t   

 What is the least separation between the particles? 
 

Example 16. Two stones are thrown up simultaneously 

from the edge of a cliff 240 m high with initial speed of 

10 m/s and 40 m/s, respectively. We shall draw the 
graph of the time variation of position of the second 

stone with respect to the first. (Assume stones do not 

rebound after hitting the ground. We will neglect air 

resistance, take g = 10 m/s
2 

for the sake of 
calculations). 

One can easily conclude that the stone thrown up with 

velocity 10 m/s will reach ground first. This is so 
because as long as both the stones are in motion the 

other stone will always have a velocity of 30 m/s in 

upward direction relative to it. Further, if the stones 

take time, 
1
t  and 

2
t  to reach the ground, using Eq. 3.12, 

we have 2

1 1

1
240 10 10 ,

2
t t     which gives 

1 8 st   

and 2

2 2

1
240 40 10 ,

2
t t     which gives 

2 12 st   as 

their times of motion. At 8 st  , the first stone hits the 

ground and comes to rest; the second stone continues 

moving for another 4 seconds. This demands us to 

calculate the relative position of second stone from the 

first in two time intervals, 0 8 st   and 

8 s 12 s.t   

In time interval 0 8 s,t   measuring the height from 

the point of projection, 

 2 2

21 (40 5 ) (10 5 ) 30 ,y t t t t t      

and in the time interval 8 s 12 s,t   

 2 2

21 (40 5 ) ( 240) 240 40 5y t t t t       . 

Table 4.2 depicts the essentials for generating  the 

21-y t  graph, which is sketched in Fig. 4.65. 

Table 4.2: Relative position of the second stone as seen 

from the first. 
 

(a) 0 8st   

t, s 0 2 4 6 8 

21
, my  0 60 120 180 240 

 

y21 

Second stone 

First stone 
 

 

For 0 8 st  , 
21

30y t  

 

For 2

218s 12 s, 240 40 5t y t t       

 

(b) 8s 12st   

t, s 8 9 10 11 12 

21 , my  240 195 140 75 0 
 

It is instructive to draw the variation of relative position 
of the second stone from the first qualitatively. An 

intuitive feeling of the pattern of variation of the 
relative position with time is as important as the step-

by-step solution. 

We shall now proceed to apply the concept of relative 
velocity to some common problems, particularly the 

rain-umbrella problem and the problem of crossing a 

river. 
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220 
 

200 
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80 
 

60 
 

40 
 

20 

 

0          2       4        6       8   9 101112 

t, s 

y12, s 

 

Fig. 4.65 
 

Example 17. In the absence of winds, raindrops fall 

vertically downward, say with velocity .
ro

v


 A girl 

standing on the ground has to hold her umbrella in 
vertical position to protect herself from the rain,  

Fig. 4.66(a). If the girl starts walking to the right with 

velocity 
go

v


 relative to ground, in which direction she 

must hold her umbrella? 
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The girl will instinctively turn her umbrella and hold it 

at a certain angle from the vertical so as not to get 
drenched. We can calculate precisely the direction in 

which she will hold her umbrella. Formula 4.20 can be 

used the relate the required velocities. Velocity 
rg

v


 of 

the raindrops relative to the girl is given by the equation 

 .
rg ro go

v v v 
  

 

As shown in Fig. 4.66(b), the raindrops appear to her 

falling at an angle with the vertical. We have 

 tan .
go

ro

v

v
   

While walking, the girl will be holding her umbrella at 

angle  with the vertical as shown in figure (c). 

 

(c) (a) 

 
rg

v


 

ro
v


 

go
v


 

(b)  
Fig. 4.66 

 

Example 18. A girl standing on ground has to hold her 

umbrella at 30° with the vertical in order to protect 

herself from the rain, see Fig. 4.67(a). She throws the 
umbrella and starts running at 4 m/s and finds raindrops 

falling vertically downward (figure b). In which 

direction the girl is running? Find the velocity of 

raindrops relative to (a) the ground, (b) the running girl. 

 
30 

(a) (b)  

Fig. 4.67 

Suppose you are running on a straight road besides a cart 

with a speed that is equal to the speed of the cart itself. 
Will you surge ahead of the cart or be left behind? 

Answer this question and apply the same line of 

reasoning to this problem. The girl will find the raindrops 

falling vertically downward if she runs in the direction of 
and with the velocity of the horizontal components of the 
velocity of raindrops relative to the ground.  

Relative to the ground the raindrops are falling at an 

angle of 30 with the vertical, say, with speed .
ro

v  

From the velocity diagram of Fig. 4.68, you 

immediately get the horizontal component of the 

velocity of the raindrop relative to ground as sin 30 .
ro

v   

This component must be equal to the velocity with 

which the girl runs. Therefore, 

 sin 30 4m/s
ro

v    

giving  

8m/s.
ro

v   

Also, velocity of raindrops relative to girl 

 cos 30
rg ro

v v   

       
3

(8m/s) 4 3 m/s.
2

    

As an effort to enhance confidence you can apply 

Formula 4.20 in a formal way. The velocity of 

raindrops with respect to ground ( ),
ro

v


 the velocity of 

girl relative to ground ( )
go

v


 and velocity of raindrops 

with respect to girl ( )
rg

v


 are related as 

 .
rg ro go

v v v 
  

 

In our example, velocity of the girl relative to ground 

must be such that when her velocity is subtracted from 

,
ro

v


 we get a vector directed vertically downwards. 

Figure 4.69 illustrates the required vector operation. 

 

30 
rg

v


 

ro
v


 

go
v


 

90 

30 

cos 30
ro

v   vt0 

sin 30
ro

v


 

 Fig. 4.68 Fig. 4.69 

It is left to you to calculate 
ro

v  and 
rg

v  from the 

triangle of velocities.   
 

Example 19. A boy running in a straight line on a plain 
horizontal ground at 4 m/s finds that the rain drops fall 

at angle 30° with the vertical. He reduces his speed to  

2 m/s and finds the rain falling vertically. Find the 
speed of the rain and the angle its velocity vector makes 
with the vertical. 

With the assumed velocity of the rain (Fig. 4.70(a)) and 

given velocities of the boy (b), we construct the 
velocity diagram (c). That’s it! This problem involves 

just this much physics. Now find 
rg

v  and  (in  

5-6 seconds). 
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 

(a) 

rgv


 

rgv


 

bgv


 

A 

B 

30 

C 

 

D 

(c) 

 

–4 m/s –2 m/s 

2 m/s  (After reduction) 

4 m/s (Initially) 

(b) 

 

Fig. 4.70 
 

Example 20. A boat can be sailed at speed 
1

v  relative 

to still water. The sailor wants to cross a river of width 

b flowing at speed 
2
.v  (i) In which direction should the 

boat be headed to get straight across? How long does it 
take in crossing the river in this case? (ii) If the boat is 

pointed straight across, how long does the crossing 
take? 

From formula 4.20, we see that the velocity of boat 

relative to ground 
bg

v


 is related to the velocity of boat 

relative to water 
1

v


 and the velocity of water relative to 

ground 
2
,v


 which the river flow velocity, as 

 
1 2

.
bg

v v v 
  

 

As a first step to visualize the motion of the boat consider 

two simple cases. If the boat is headed downstream, it 

will move with velocity 
1 2bg

v v v   in downstream 

direction, Fig. 4.71(a), as seen from the bank. And if the 
boat is headed upstream it will move with velocity 

1 2bg
v v v   in upstream direction as in (b). 

 

(a)                             (b)                      (c) 

b 

vbg = v1 + v2 

 

(River) 

v1 v2 
v1 v2 

v1 
v2 

vbg 

v2 

B 

vbg = v1 – v2 

A 

 

Fig. 4.71 

Now, suppose the boat is at point A  on one bank and 
the sailor wants to sail it to point B  right across on the 
other bank taking the boat straight across. The sailor 

must head the boat somewhat upstream so as to 

compensate for the distance the boat is carried 

downstream by the flowing water. Indeed, the upstream 

component of the velocity 
1

v  of boat relative to water 

must be equal to the river flow velocity 
2
.v  See the 

velocity diagram of Fig. 4.71(c). The angle  in the 

figure must be such that the sum of vectors 
1

v


 and 
2

v


 is 

directed along line .AB  What is the velocity 
bg

v  with 

which the boat crosses the river in this case? From the 

velocity diagram 
1
cos

bg
v v   which is equal to 

2 2

1 2
v v  (using Pythagoras). How long does the boat 

take to cross the river?  

2 2

1 2

,
b

t
v v




 obviously. 

Can the boat cross the river in lesser time (the point 
where it lands on the other bank is not important)? We 
can use the velocity diagram (c) to answer this question. 

If the boat is headed as shown in the figure, it crosses the 

river with velocity 
1
cos .v   

Apparently, the sailor has no control over 
1

v  (we are 

analyzing the problem under the assumption that the boat 

is sailed on water with a constant speed) but he can 

choose  as he desires. In that case, to minimize the time 

of crossing the river, he will try to make 
1
cosv   as large 

as possible. The maximum value of the function cos  

occurs at 0;   therefore, the time of crossing the river 

is minimum when the boat is pointed straight across, see 

Fig. 4.72.  

 

2 2

1 2
v v  

v1 

B C 

v2 

A  

Fig. 4.72 

Under this condition the boat lands on the other bank at 

a point somewhat downstream (at point C  in the 

figure), and takes a time 
2 2

1 2

AC

v v
 in crossing the 

river. A useful result to note is that this time is also 

equal to 

1

b

v
 or 

2

.
BC

v
  

 

Example 21. A swimmer starts from point A  on one 
bank of a river and wants to reach point B, swimming 
directly along line AB, see Fig. 4.73. Swimmer’s speed 

with respect to water is 2 km/h, which is also the speed 

with which the river flows. Find the angle at which the 
swimmer must aim. 
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 B 

A 

River 
2km/h 

60 

 

Fig. 4.73 

Let the swimmer aim at angle ( 60 )   
 as shown in 

Fig. 4.74. The angle  must be such that the velocity of 

the swimmer relative to bank is directed along line .AB  

 

A 

B 

vrg 

(2 + 2 sin ) 

vr 

2 km/h 

2 cos  
 

30 

 

Fig. 4.74 

When the velocity of river relative to ground 
rg

v  is 

added to the velocity of the swimmer relative to water 

sw
v  one obtains the velocity of the swimmer relative to 

ground .
sg

v  The addition of the velocities is also 

depicted in the figure.  
From the figure we have 

 
2 2sin

tan 60
2cos

 



  

or 
1 sin

3
cos

 



 

or  3 cos sin 1    

  
3 1 1

cos sin
2 2 2

    

  sin 60 cos cos60 sin sin 30       

or  sin(60 ) sin 0     

or  60 30    

or  30 .    
 

Example 22. Let us consider the problem of  

Example 30, Chapter 3.  
We shall solve the problem in a reference frame fixed 

to particle 2 and moving with it. 

At the initial moment 0t   the separation of particle 1 

from particle 2 is 2
2

2
1 ll   as shown in Fig. 4.75. 

 

2

2

2

1
ll 

2

1

tan
l

l
   

2

2

2

1
ll   

 

2 

O 

 

1 

2 

1 l1 

l2 

(a) (b) 
v1 

v2 

 

Fig. 4.75 

For obtaining the velocity of particle 1 relative to the 
chosen reference frame subtract the velocity of particle 

2 from the velocity of particle 1, see Fig. 4.76(a). 

 

 

 

 

P 

2 

2

2

2

1
ll   

2 2

12 1 2
v v v 

1 

2v


1v


 

12 1 2v v v 
  

 

2 2
12 1 2 ,v v v 


2

1

tan
v

v
   

 

(a) (b) 

2

1

tan
l

l
   

2

1

tan
v

v
 

v12 

 

Fig. 4.76 

It can be seen that particle 1 is closest to particle 2 at 

the instant 
12

v


 becomes perpendicular to the line 

joining them. How? In Fig. 4.76(b), the least distance 
between particles 1 and 2 is the length of the line 2P. 

From the figure,  

 

2 2

1 1

2 2

1 1

tan tan
| tan( ) |

1 tan tan
1

v l

v l

v l

v l


  

   
    

  

   2 1 1 2

1 1 2 2

| |
.

v l v l

v l v l





 

The minimum distance between the particles 1 and 2 is 

 2 2
min 1 2 | sin( ) |d l l     

 = 2 2 2 1 1 2

1 2 2 2

2 1 1 2 1 1 2 2

| |

( ) ( )

v l v l
l l

v l v l v l v l




  
 

 = 
2
2

2
1

2112 ||

vv

lvlv




. 

We can also calculate the instant of time at which the 

distance between the particles is the least. To reach 
point P  the particle 1 has to cover a distance 

2 2

1 2
cos( )l l    with speed 

2 2

1 2
.v v  Therefore 

particle 1 takes time  
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2 2
1 2

2 2
1 2

| cos ( ) |l l
t

v v

   



 

 
2 2
1 2 1 1 2 2

2 2 2 2
1 2 2 1 1 2 1 1 2 2( ) ( )

l l v l v l

v v v l v l v l v l

 
 

   

1 1 2 2

2 2
1 2

v l v l

v v





 

to reach point P. Since the initial moment of time is 0,t   

the instant of time at which the distance between the two 

particles is the least is given by the above expression. 

This approach is best suited when we are given the 
numerical values of the initial distances and velocities. 
In that case, calculations of the distance and angles is a 

game. As an example, take 
1 2

10 3 m, 10m,l l   

1
2m/sv   and 

2
2 3 m/s,v   and solve the problem. 

Also see Example 23. 
 

Example 23. Two persons, 1 and 2, are walking with 

constant velocities of equal magnitude along two roads 

which are angled at 60 to each other as shown in Fig. 4.77. 

 

4 km 

3 km 

1 

60 

2 

 

Fig. 4.77 

Find the shortest distance between the persons during  

the course of their motion? 
The problem was thrown to you by a friend standing 

somewhere on the ground, may be at the intersection of 

the roads. He expected you to use geometry to set 

algebra and then apply the concepts of maxima and 
minima of calculus and find the answer after some 

irritating mathematics. But you are a little smarter, not 

interested in doing lengthy calculations, though you can 
do it when asked to. All you did is this: you stepped 

into the shoes of person 1 and captured his sight. 

Whatever you saw you sketched that diagrammatically, 

Fig. 4.78, and came with the answer, in 10 seconds. 
 

3 km 

3 km 

2 

60 

1 km 

dmin 

v 

1 

 
Fig. 4.78 

 
min

3
(1km)sin 60 km.

2
d    

Before stepping into the shoes of person 1, you 

calculated the velocity of the person 2 relative to person 
1. Do it again. You determined certain angles and 

distance. Determine them again.  
 

Example 24. A balloon carrying a man ascends at the 

rate of 3 m/s (assumed constant). At t = 3 s (assuming  
t = 0 to be the instant when the balloon is at the ground 
level), the man drops a ball (I) and simultaneously 

throws another ball (II) with a velocity of 1 m/s in the 

horizontal direction. Take 2
10 m/s .g   Find the 

distance between the two balls at t = 4 s.  

At t = 3 s, height of the balloon from the ground level 

 = 3 m/s  3 s = 9 m. 
Velocity of the ball (I) when it is dropped = 3 m/s 

upwards. Ball (II) thrown with a velocity of 1 m/s in the 
horizontal direction also has a velocity of 3 m/s in 

upward direction.  

Displacement of ball (I) dropped from the balloon in in 
one second time (from t = 3 s to t = 4 s) is 

S = 3 m/s  1 s + 2 21
( 10 m/s ) (1 s) 2 m,

2
    in 

vertical direction. 

Horizontal component of the displacement of ball (II) in 

one second time is 1 m/s  1 s = 1 m. Vertical 
component of the displacement of the ball (II) in one 

second time is –2 m. (How?) In vertical direction both 

the balls undergo same displacement. Therefore, the 

separation between the balls at t = 4 s is 1 m. 
Alternatively, velocity as well as acceleration in the 

vertical direction of ball (II) relative to ball (I) is zero. 

The balls will always lie in same horizontal plane. 
Moreover, ball (II) does not have any acceleration 

relative to ball (I) in horizontal direction. Separation 

between the balls at 4 st   is, therefore, 1 m.  
 

4.7. Velocity of approach 
 

In Section 3.2, Chapter 3, we introduced two important 
quantities, namely distance covered by a moving point 
and distance between two points. Distance between two 

points or separation between two points is defined as 

the length of the straight line segment joining the 
points. When the distance between two points 

decreases, they are said to approach each other. The 

rate at which the points ‘kill’ their separation is called 

velocity of approach. To understand the concept of 
velocity of approach and to devise a method for its 

computation, we consider a few motions of two points 

described in the examples below. 
(i) Two points A and B move along a straight line in 

opposite directions with speeds 3 m/s and 2 m/s, as 

shown in Fig. 4.79(a). 
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A B 

3 m/s 2 m/s 

A B 

3 m/s 2 m/s 

(a) 

(b) 

A 

B 

5 m/s 

5 m/s 

(c)  

Fig. 4.79 

In the given motion, points A and B come closer by 5 m 

in every one second time until they cross each other; the 
separation between them decreases by 5 m every 

second. We can express this by saying that the velocity 
of approach between points A and B is 5 m/s. 
 

(ii) In Fig. 4.79(b), points A and B have velocities 3 m/s 
and 2 m/s in the same direction along a straight line. The 
distance between points A and B will decrease by 1 m 

every second as long as point A is behind B. Velocity of 

approach between points A and B is 1 m/s. If you draw 

their positions at instants 1 s, 2 s, 3 s…, you find that the 
separation between them decreases by 1 m every second. 
 

(iii) In Fig. 4.79(c), points A and B move with equal and 

constant velocities, their velocities always being 

perpendicular to the line connecting them. Clearly, the 

separation between the points remains constant. The 
velocity of approach between them is zero, va = 0. 
 

(iv) Consider the velocities of points A and B as shown 
in Fig. 4.80. Velocity of approach of points  A and B is 

 2 m/s + 3 m/s = 5 m/s. How? 

It can be shown that points A and B come closer by 5 m 
every second. For how long will they do it? When will 

they start moving apart? 

You must not miss the most crucial information in this 

example. The velocity components of the points that are 
perpendicular to the line joining them are equal and in 

the same direction. 

 

B 

A 

3 m/s 

2 m/s 

B 

A 

3 m/s 

2 m/s 

5 m/s 

5 m/s 

5 m/s 

5 m/s 

 

Fig. 4.80 

(v) Points A and B move with a speed 5 m/s each, such that 
their velocity vectors are in opposite directions and always 

perpendicular to the line AB as shown in Fig. 4.81(a). 

The length of the line segment AB will not decrease in 

this case. Velocity of approach between the points is 
zero. Both the points move in a circle, the mid point 

between them being the centre. It can be seen that their  

 

5 m/s 

5 m/s 

5 m/s 

5 m/s 

B 

A 

(a) 

 

5 m/s 

10 m/s 

10 m/s 

5 m/s 

B 

2 unit 

1 units 

(b)  

Fig. 4.81 

angular velocities about the centre is same. If you plant 

yourself at B and look at point A, what will you 
observe? Point A describes a circular path? An elliptical 

path? Or some other complicated path? Note that the 
distance between points A and B does not change. 

(vi) In Fig. 4.81(b), the points A and B move with speed 
10 m/s and 5 m/s, respectively, their velocity vectors 

always being in opposite directions and also always 

perpendicular to the line AB. What about the separation 
between the two points? Will it change or not? What is 

the velocity of approach between the points? 
 

(vii) Point A moves such that it has two components of 

velocity: one component is 5 m/s, always perpendicular to 

the line AB, and the other component is 2 m/s along AB. 

 
5 m/s 

5 m/s 

5 m/s 

1 m/s 

1 m/s 

2 m/s 

2 m/s 

t = 0 

B 

A 

t = t 

5 m/s 

 

Fig. 4.82 

Point B also has two components of velocity: one 
component is 5m/s always perpendicular to AB as 

shown in Fig. 4.82 and other components is 1 m/s along 

AB aimed at A. Velocity of approach between points A  
and B  is 3 m/s. How? 

(viii) In Fig. 4.83, the points A and B are 15 m apart 
initially.  

 

45 

45 

1 m/s 

9 m/s 

1 m/s 
1 m/s 

1 m/s 

6 m/s 

9 m/s 

6 m/s 

B 

A 
6 m 

5 m 

9 m 

5 m 15 m 

1 m 

1 m 

(Not on Scale)  

Fig. 4.83 
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Point A moves with constant velocity, with components 

6 m/s and 9 m/s as shown. Point B also moves with a 
constant velocity with components 1 m/s and 1 m/s. At 

the initial moment (t = 0), the velocity of approach is 9 

m/s + 1 m/s = 10 m/s. 

What is the velocity of approach between points A  and 
B  at the moment of time t = 1 s? 

To calculate the velocity of approach at t = 1 s, draw 

the positions of points A and B at this moment. And 

then resolve the velocities of A and B along the line AB 
and perpendicular to it. Displacements, distances and 

angles that matter are shown in Fig. 4.84.  

 

1 m/s 

6 cos 45 

9 cos 45 
9 m/s 

6 m/s 

1 m/s 

1 cos 45 

3 cos 45 

2 cos 45 
1 cos 45 

 

Fig. 4.84 

The velocity of approach between points A and B at 

t = 1 s is va = 3 cos 45 + 2 cos 45 = 5 cos 45 m/s. At 
what moment of time is the velocity of approach a 

between A and B maximum? When do points start 

getting separated? 
  

(ix)  

 

3 sin 30 

A 

B 

3 cos 30 

2 sin 60 

2 cos 60 

30 

60

3 m/s 

2 m/s 

v 

v|| 

Sun 

v0 

  (a)              (b) 

Fig. 4.85 

Points A and B move in perpendicular directions as in 

Fig. 4.85(a). At a certain moment of time their positions 

and velocities are shown in the figure. 
Velocity of approach between the points A and B at this 

moment is (3 cos 30 + 2 cos 60) m/s. 
 

(x) A cosmic body is approaching the Sun along a path 

that can be approximated to be elliptical, Fig. 4.85(b). 

On looking at the cosmic body from the Sun, one finds 
that the length of line of sight to the body shrinks, the 

body comes nearer to the Sun. In the figure, the velocity 

of the cosmic body has been resolved into two 

components - the component v  along the line of sight, 

and the component v  perpendicular to it. The cosmic 

body approaches the Sun with velocity v . One should 

not have any doubt that the velocity of approach 

between the cosmic body and the Sun is a variable 
quantity in example shown in the figure. Can you 
predict the velocity of approach when the cosmic body 

is closest to the Sun? When the cosmic body is closest 

to the Sun, what is the angle between its radius vector 

from the Sun and its velocity vector? 
 

(xi) Depicted in Fig. 4.86 is the motion of two points 

A  and B  along two parallel lines. The points come to  
the closest at moment t0. 

 A A A 

B B 

B 

v2 

v2 

v1 

v1 

v1 cos 1 

v1 cos 2 

v2 cos 1 

v2 cos 2 

2 

1 

1 

2 

t > t0 
t < t0 

t0 
 

Fig. 4.86 

For time 0t t , the points come closer, velocity of 

approach between them being 1 1 2 1cos cos .av v v     

How? 
 

4.7.1. Velocity of Separation 
 

When the distance between two points, that is, their 
separation increases, we speak of velocity of separation, 

which is defined as the rate at which the separation 

increases.  

The examples that follow illustrate the concept of 
velocity of separation vividly. 
 

(i) In the motion depicted in Fig. 4.87(a), the velocity of 

separation between points A and B is 5 m/s. 
 

(ii) The velocity of separation between points A and B 

in the motion shown in Fig. 4.87(b) is 1 m/s. 

(iii) Points A and B move with constant velocities as 

shown in the Figure 4.87(c). The velocity of separation 
is 3 m/s + 2 m/s = 5 m/s. You must note that the 

velocity components perpendicular to the line joining 

points A and B are equal.  

 A B 

3 m/s 

2 m/s 

(a) 

A B 

3 m/s 

2 m/s 

(b)  

 

5 m/s 

5 m/s 

3 m/s 

2 m/s 

A 

B 

(c)  

Fig. 4.87 
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(iv) Points A and B move with constant velocities as 

shown in Fig. 4.88. 

 

5 m/s 

1 m/s 

1 m/s 

2 m/s 

A 

B 

1 m 

t = 0 

1 m/s 

5 m/s 

2 m/s 

4 m 

4 m 

45 

45 

45 

A 

B 
1 m/s 

 

Fig. 4.88 

At the initial moment t = 0, the points A and B are 1 m 
apart. What is the initial velocity of separation? It is  

3 m/s. What is the velocity of separation at t = 1 s? 

Mark the positions of A and B at t = 1 s. Calculate the 
relevant distances and angles, as depicted in Fig. 4.89. 

Find the components of velocities along the line AB. 

 5 cos 45 m/s 

2 cos 45 

1 cos 45  m/s 

1 cos 45 
5 m/s 

2 m/s 

45 

45 

B 

A 

 

6 cos 45 m/s 

1 cos 45 

A 

B 

1 m/s 

 

Fig. 4.89 

The velocity of separation between the points A  and  B 

at time  t = 1 s is 

 vs = 1 cos 45 + 6 cos 45 = 7 cos 45 m/s. 
 

(v) Points A and B move such that one component of 
velocity of A is perpendicular to the line AB and the 

other along AB directed away from B, and one 
component of velocity of B is perpendicular to AB and 

the other is along AB directed away from A, Fig. 4.90. 

 

A 

B 

4 m/s 
4 m/s 

2 m/s 

5 m/s 

5 m/s 

5 m/s 

5 m/s 

2 m/s B 

A 

 

Fig. 4.90 

Velocity of separation between points A and B is  

4 m/s + 2 m/s = 6 m/s. 
(vi) For the motion sketched in Fig. 4.86, the points 

move apart for time 0.t t  What is the velocity of 

separation of the points? By a look at the velocity 

components along the line joining the points, we arrive 

at the answer, 1 2 2 2cos cos .sv v v     
 

(vii) Let us consider Example (x) of the previous 

section, Fig. 4.85(b). After kissing the Sun the cosmic 

body moves away from it. The separation between the 
cosmic body and the Sun now increases. 

 

v 

v|| 

Sun 

v0 

 

Fig. 4.91 

It follows from Fig. 4.91 that the velocity of separation is 

v , the component of velocity on the line connecting the 

cosmic body to the Sun. What will be the velocity of 
separation when the cosmic body is farthest from the Sun? 
 

 Example 25. Let us take up Example 30, Chapter 3 
again. We shall apply the concept of velocity of 

approach to this problem. 

The particles 1 and 2 come closer for some time and 

then they go farther apart. Figure 4.92 shows the 

configuration at time .t  The distance between them 

will be the least at the moment the approach velocity is 

zero. That is, 1 2cos sin 0v v     

 

v1 
v2 t = 0 

v2 sin  

v1 cos  

v1t 

l1 

l2 

 1 

2 
v2t 

 

Fig. 4.92 

or   1

2

tan .
v

v
   …(i) 

Also from the figure, 

 2 2

1 1

tan .
l v t

v t l


 


 …(ii) 

From Eqs. (i) and (ii), we get 

 2 2 1

1 1 2

l v t v

v t l v





 

or  1 1 2 2
2 2

1 2

.
v l v l

t
v v





 

Hence the least distance between the particles, 
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Example 26. Three points are located at the vertices of 

an equilateral triangle whose side equals a. They all 
start moving simultaneously with constant speed v, with 

the first point heading continually for the second, the 
second for the third and the third for the first. How soon 

will the points converge? 

To understand the motion of points, we treat the 
velocity of each point as constant for time interval dt 

and calculate the infinitesimal displacement. We will do 

it for the next dt, and then again for the next dt. When 

we draw the positions of the points after dt’s we get the 
pattern of motion illustrated in Fig. 4.93. 
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Fig. 4.93 

Now let us focus on the motion of point B. If v1 and v2 

are components of velocity of B along BO and 

perpendicular to it at any instant, v1 = v cos 30 and v2  

= v sin 30. This can be inferred from the symmetry of 
the problem and simple geometrical calculations. 

Hence, we can assert that point B approaches point O at 

a constant rate of v sin 30. This gives 

Initial separation
Time of convergence

Velocity of convergence
  

                         

( / 2)

2cos 30

cos30 3

a

a

v v

 
   


. 

We can also arrive at the answer by analyzing the 
convergence of points B and C, see Fig. 4.94. It can be 
shown that B and C converge at a constant rate of 

cos 60v v   until they meet. Hence, the time of 

convergence 
2

( / 2) 3

a a
t

v v v
 


. 

 

B 
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v cos60 C 
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v sin60 

v 
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A 
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Fig. 4.94 
 

Example 27. Point A moves uniformly with speed v so 

that the vector v


 is continually ‘aimed’ at point B 

which in its turn moves rectilinearly and uniformly with 

speed u < v. At the initial moment of time uv


  and 

points are separated by a distance l. How soon will the 

point converge? 

Figure 4.95 sketches the motion of points A and B. If 
the points converge at point C, say at time t = T, the x- 

component of displacement of A must be equal to the 

displacement of B and the y- component of the 

displacement of A must be equal to l. The x and y 

components of velocity of A are vx = v cos  and  

vy = v sin . You can find the x- and y- components of 
displacement of A from the following equations. 

 

 

A 

B 
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x 

C u u 
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vx = v cos  

vy = v sin  
vx 

t = 0 

l 
t = T 
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Fig. 4.95 

 
T

xdtvx

0

 and 
0

.

T

y
y v dt   

Substitution of vx = v cos  and vy = v sin  into the 
integrals, and the condition of convergence  of points A 

and B give the following two equations 

 

0

cos

T

v dt uT   … (i) 

and  

0

sin .

T

v dt l   …(ii) 

Now what is left to be done is to solve these two 
equations for T. 

Acknowledging that  is a variable quantity, one can 
anticipate that solving for T from these equations is a 
formidable task. A different and easier approach to the 

solution is sought. 

The concept of velocity of approach can be tried. 

Velocity of approach (or velocity of convergence) 
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between points A and B is (v – u cos ) which is also a 
variable quantity. See Fig. 4.96. 

 

 

C u 

A 
l 

u cos  

v 
B 

 

Fig. 4.96 

You can calculate the distance of convergence (the 
separation they ‘kill’) in an infinitesimally small time dt 

by treating v – u cos  as constant over this interval. 
This infinitesimal distance of convergence equals  

(v – u cos )dt. Integration of this infinitesimal distance 
over total time of motion gives the total distance by 

which the points A and B converge, which is, obviously, 

equal to the initial separation l. That is, 

 

0

( cos ) .

T

l v u dt    …(iii) 

Eqs. (i) and (iii) can be easily solved for the unknown 

T. Multiply Eq. (i) by u and Eq. (iii) by v and then add 
the resulting equations. This gives 

 2 2

0

T

u T vl v dt    

or  u2T + vl = v2T  

or  
2 2

.
vl

T
v u




 

If point A  moves with the same speed as that of point 

,B  the points moving in the same fashion as described 

in this problem, A  will not be able to catch .B  

Eventually both A  and B  will be moving on the given 

straight line, one point behind the other. What is the 

final separation between the points? 

Another very interesting problem on the concept of 
velocity of approach is discussed in Example 37.  
  

 

Additional Examples 
 

Example 28. A small steel ball A is at rest on the edge 

of a table of height 1 m. Another steel ball B, used as 
the bob of a metre-long simple pendulum, is released 

from rest with the pendulum suspended horizontal, and 

swings against A as shown in Fig. 4.97. The masses of 

the balls are identical and the collision is elastic. 
Considering the motion of A only up until the moment 

it first hits the ground, 
(i) which ball is in motion for the longer time; 

(ii) which ball covers the greater distance? 
 

 
B 

A 

1m 

1m 

 
 

Fig. 4.97 

The balls interchange their velocities, that is, ball B stops and ball A 

takes off with the velocity with which ball B hits it. For the time 

being, let us use this information and proceed. You will learn about 

collisions in Chapter 9 in details. 
 

(i) Comparison of times of motion of balls: 
The vertical acceleration of ball A falling from the table 

is always g, therefore, the time it takes to fall 1 m can 

be calculated as   

 2 21
1m 9.8 m/s

2
t    

which gives 0.5t  s (approximately). 

How long does ball B take in moving though the circular 

arc? The calculation of the time of motion of ball B 

requires an integration to be evaluated.  
But it turns out that you can answer this question without 

actually calculating the time of motion of ball B. What 

can be stated with certainty is that, since the thread exerts 
an upward force on ball B, its vertical acceleration is 
always less than g. Therefore, the vertical motion of ball 

B takes a longer time than the vertical free fall of ball A; 

ball B stays in motion for longer. 
 

(ii) Comparison of distances covered by the balls: 

The bob of the pendulum - ball B - describes one fourth 
of a circle. The distance it covers is 

3.14 1m
1.5 m.

2 2

r 
   The other ball, A, follows a 

parabolic path, the length of which cannot be 
determined by elementary methods, it requires an 

integration. However, you can find out which ball 
covers a longer distance without actually calculating the 

distance covered by ball A. This ball hits the ground at a 

distance of 
2 1 m

2 1m 2 mvt g
g


      from the 

edge of the table. The length of its path is, therefore, not 

less than the distance between the starting point and the 

point where it hits the ground, which is 5 m 2.2 m.  

In summary, ball A moves on a longer path, but stays in 
motion for a shorter time than ball B. 
 

Example 29. A particle of mass m carries an electric 
charge q and is subject to the combined action of 

gravity and a uniform horizontal electric field of 

strength E. It is projected with speed v in the vertical 

plane parallel to the field and at an angle  to the 
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horizontal. What is the maximum distance the particle 

can travel horizontally before it is next level with its 
starting point? 

You have investigated the motion of a projectile on an 

inclined plane. You have also calculated the maximum 

range of the projectile along the plane. This problem is 
very similar to inclined plane projectile problem. Figure 

4.98 depicts the similarity and also the differences in 

motion in the two cases. 
Since the particle carries a change q, in electric field of E 

(horizontal); there is a horizontal acceleration of 
H

qE
a

m
  in the 

particle. (This is additional information which you haven’t learnt yet. 

The concept of electric field will be introduced in Volume 3 of this 

text. The expression for horizontal acceleration should not frighten 

you.) The rest is just about doing simple kinematics under constant 

horizontal acceleration aH along with vertical acceleration g due to 

gravity. 
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v 

g sin g cos  

 
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 y 
H

qE
a

m


 
v 
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 
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v sin  
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0 cos , sinx xv v a g       
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qE
v v a

m
    

0 sin ,y yv v a g     

Fig. 4.98 

As we do in all projectile motions, we will analyze the 
two components of the motion - along x- axis and along 

y- axis separately and independently. Let the particle hit 

the ground at point P  such that ,OP R  Fig. 4.99. 

 y H

qE
a

m


 

v 
g 

 
x 

v sin  

P v cos  
R 

O 

 

Fig. 4.99 

For the x- component of motion: 

 21
( cos ) .

2
HR v t a t    …(i) 

At point P  the y- component of displacement is zero. 

Therefore, for the y- component  of motion: 

21
0 sin .

2
v t gt    …(ii) 

From these equations we will calculate R  in terms of 

 ; and then set 0
dR

d



 to determine  for which R  is 

maximum. 

Eq. (ii) gives 
2 sin

.
v

t
g


  On substituting this value of  

t  in Eq. (i), we obtain 

 
2 2

2

2 sin 1 4 sin
( cos )

2
H

v v
R v a

g g

  
     

 
 

or   
22

2
sin 2 (1 cos 2 )Ha vv

R
g g

     . 

Now, 0
dR

d



, gives 

 
22

2

22
cos 2 sin 2 0Ha vv

g g
    

or   tan 2 .
H

g

a
    …(iii) 

For the value of   given by Eq. (iii), the distance particle 

travels horizontally before it is next in level with its 

starting point is maximum. An interesting point must be 

noted here. The value of tan 2  is negative; this means 

that 2  lies in the second quadrant, which implies 
 

4


  . 

Now we can calculate 

the maximum value of 

the horizontal distance as 

 
2 2

Hg a
g 

2 
–aH  

 
22

max 22 2 2 2
1H H

H H

a v av g
R

g gg a g a

       
     

  

After some simple algebra, the above equation 
simplifies to 

  
2

2 2

2max
.

H H

v
R a g a

g
    

On substituting 
H

qE
a

m
  into the expression for 

max
R  

we get 

 

22
2

2max

v qE qE
R g

m mg

          
 

  2
2 2 2

2
.

v
qE m g q E

mg

    

 

Example 30. Let us make the problem of Example 24 a 
bit more interesting. Assume the position of the balloon 
at t = 3 s as the origin of a coordinate system with x- 

axis in the horizontal and y- axis in the vertical 

direction. A wall has been constructed whose 
intersection with the trajectory of ball (II) is described 

with by equation y = h  x tan , where  = 30, and 

1
m

2
h   as shown in Fig. 4.100. At what point (x, y) 

does the ball strike the wall? 



104 

Equation of the above mentioned line on the wall is  

y = h  x tan   

or  
1

.
2 3

x
y    

 

Wall 

y = h – x tan  

1 m/s 

3 m/s 

(0, 0) 

 = 30o 

y 

x 

 

Fig. 4.100 

The equations of motion of the ball (II) are 

 (1m/s)x t t    

 2 2 21
(3m/s) (10 m/s ) 3 5 .

2
y t t t t     

Substituting for t  from the first equation into the 

second, we obtain equation of the trajectory 

 y = 3x – 5x
2
. 

On solving the equation of the line with the equation of 

trajectory, we obtain 

 21
3 5

2 3

x
x x    

or  2 1
(5 3) (1 3 3) 3 0.

2
x x     

Roots of the above quadratic are 

 0.23 mx   and 0.56 m.  

Two values of x arise because the trajectory of the ball 
(II) is parabolic which would have intersected 

the line y = h  x tan  at two points had this been just 
a line, not a line on the wall. In the given arrangement 

ball will hit the wall only once, so only the first impact 
point is to be considered for which x = 0.23 m, and 

correspondingly 

 
1 0.23

0.37 m.
2 3

y     

Ball strikes the wall at point (0.23, 0.37) m. 
 

Example 31. At what angle with horizontal should a 

particle be thrown from the origin (0,0)O  with a 

velocity v relative to the ground so that it takes 

minimum time to hit the line tan ,y h x    see  

Fig. 4.101? Also, find the limiting value of v. 

 

y = h – x tan  

(0, h) 

O 

y 

x   

v 

 

Fig. 4.101 

Let the ball be projected at an angle  with the 
horizontal and strike the wall in time t. 
The laws of motion for the ball are  

 x = (v cos )t 

 y = (v sin)t  21
.

2
gt  

Equation of the wall is  

 y = h  x tan . 

On eliminating x  and y  from these equations we 

obtain  

 21
[cos tan sin ] 0

2
gt v t h        

or  21 cos sin sin cos
0

2 cos
gt v t h

         
  

or  21
[sin( )] 0.

2 cos

v
gt t h    


 …(i) 

Differentiating the above equation relative to , 
 

1
2 cos( ) sin( ) 0

2 cos

dt v dt
g t t

d d

           
 

For t to be minimum, 0.
dt

d



 On substituting 0

dt

d



 

in the above equation we obtain 

 [cos( )] 0
cos

v
t   


 

or  cos( ) 0   

   +  = 90 
or   = 90  . 

Substituting  = 90 –  into Eq. (i) and solving for t 
we obtain  

 
2 2

min

2 cos

cos

v v gh
t

g

  



. 

It can be seen that 
min

t  will have a real, meaningful 

value only if 

 2 22 cosv gh   

or  2 cosv gh  . 
 

Example 32. On a frictionless horizontal surface, 
assumed to be the x-y plane, a particle A  is moving 

along a straight line parallel to y- axis with a constant 

velocity of ( 3 1) m/s. At a particular instant when 

the line OA  makes an angle of 45 with the x- axis, 

another particle B  is projected along the surface from 

the origin O, see Fig. 4.102. Its velocity makes an angle 

 with the x- axis and it hits particle .A  (a) How must 

the velocity v  of particle B  be related to the angle  

for this to happen? Can you determine the values of  

and v  uniquely on the basis of forgoing given 

information? (Continued….) 


